DCR-TRV940/TRV940E/TRV950/RVV950E

SECTION 6 ADJUSTMENTS

Link

Before starting adjustments
Adjusting items when replacing main parts and boards

- CADJERA SECTION AD.JUSTIMENTS	
- PREPARATIONS BEFORE ADJUSTMENTS	
- INITIALIZATION OF 8, A, B, C, D, E, F, 1B, 1E, 1F PAGE DATA	
- CAMERA SYSTEM ADJUSTMENTS	
- ELECTRONIC VIEWFINDER SYSTEM ADJUSTMENTS	
- LCD SYSTEM ADJUSTMENTS	

- NECHANISIM SECTION ADJUSTIMENIS

HOW TO ENTER RECORD MODE WITHOUT CASSETTE
HOW TO ENTER PLAYBACK MODE WITHOUT CASSETTE
TAPE PATH ADJUSTMENT

- V/DEO SECTION ADJUSTIMENIS

PREPARATIONS BEFORE ADJUSTMENTS
SYSTEM CONTROL SYSTEM ADJUSTMENTS
SERVO AND RF SYSTEM ADJUSTMENTS
VIDEO SYSTEM ADJUSTMENTS
AUDIO SYSTEM ADJUSTMENTS

SERTVIGE MMODE
OADJUSTMENT REMOTE COMMANDER
DATA PROCESS
SERVICE MODE

Contents of LEVEL 2 and LEVEL 3 Service Manual

CONTENTS	LEVEL 2	LEVEL 3
1. SERVICE NOTE	\bigcirc	\times
2. DISASSEMBLY	\bigcirc	\times
3. BLOCK DIAGRAMS	OVERALL POWER	\times
4. PRINTED WIRING BOARDS AND SCHEMATIC DIAGRAMS	CD-389, CK-116, JK-222, LB-080, MA-410, PD-168, SE-132 BOARD FP-100, FP-102, FP-228, FP-495, FP-497, FP-500, FP-503, FP-504 FLEXIBLE	DB-014, VC-288 BOARD
5. REPAIR PARTS LIST	EXPLODED VIEWS	\times
	ELECTRICAL PARTS	(DB-014, VC-288 BOARD)

Section Title Page
Section Title
Page
6. ADJUSTMENTS
Before Starting Adjustments 6-1
1-1. Adjusting Items when Replacing Main Parts and Boards 6-2
6-1. Camera Section Adjustments 6-4
1-1. Preparations before Adjustments (CAMERA Section) $\cdots 6$ 6-4
1-1-1.List of Service Tools 6-4
1-1-2.Preparations 6-5
1-1-3. Precaution 6-7

1. Setting the Switch 6-7
2. Order of Adjustment 6-7
3. Subjects 6-7
4. Preparing the Flash Adjustment Box 6-8
1-2. Initialization of $8, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, 1 \mathrm{~B}, 1 \mathrm{E}$, 1F Page Data 6-9
1-2-1.Initialization of A, D Page Data 6-10
5. Initializing A, D Page Data 6-10
6. Modification of A, D Page Data 6-10
7. A Page Table 6-11
8. D Page Table 6-11
1-2-2. Initialization of 8, C Page Data 6-12
Initializing 8, C Page Data 6-12
9. Modification of $8, \mathrm{C}$ Page Data 6-12
10. 8 Page Table 6-13
11. C Page Table 6-13
1-2-3. Initialization of E, F, 1E, 1F Page Data 6-15
Initializing of $\mathrm{E}, \mathrm{F}, 1 \mathrm{E}, 1 \mathrm{~F}$ Page Data 6-15
Modification of E, F, 1E, 1F Page Data 6-15
E Page Table 6-16
12. F Page Table 6-17 6-19
13. 1F Page Table 6-20
1-2-4. Initialization of B, 1B Page Data 6-21
Initializing of B, 1B Page Data 6-21
14. Modification of B, 1B Page Data 6-21
15. B Page Table 6-21
16. 1B Page Table 6-21
17. Initializing of Network Setting Data
(DCR-TRV950/TRV950E) 6-22
1-3. Camera System Adjustments 6-23
18. $66 \mathrm{MHz} / 54 \mathrm{MHz}$ Origin Oscillation Adjustment (VC-288 Board) 6-23
19. Hall Adjustment 6-24
20. MR Adjustment 6-25
21. Flange Back Adjustment
(Using the Minipattern Box) 6-26
22. Flange Back Adjustment
(Using the Flange Back Adjustment Chart and Subject More than 500 m Away) 6-27
23. Flange Back Check 6-28
24. Picture Frame Setting 6-29
25. AWB Standard Data Input 6-30
26. MAX GAIN Adjustment 6-30
27. F No. \& ND Light Quality Standard Data Input 6-31
28. LV Standard Data Input 6-31
29. Auto White Balance Adjustment 6-32
30. Auto White Balance Check 6-33
31. Color Reproduction Adjustment 6-34
32. PSD Sensor Gain Adjustment 6-35
33. Angular Velocity Sensor Sensitivity Adjustment 6-37
34. Mechanical Shutter Adjustment 6-38
35. Strobe Light Level Adjustment 6-38
36. Strobe White Balance Adjustment 6-39
37. Hologram AF Output Adjustment 6-40
38. Hologram AF Angle Check 6-41
1-4. Color Electronic Viewfinder System Adjustments. 6-42
39. VCO Adjustment (DB-014 Board) 6-42
40. RGB AMP Adjustment (DB-014 Board) 6-43
41. Contrast Adjustment (DB-014 Board) 6-43
42. Back Light Adjustment (DB-014 Board) 6-44
43. White Balance Adjustment (DB-014 Board) 6-44
1-5. LCD System Adjustments 6-45
44. VCO Adjustment (PD-168 Board) 6-45
45. RGB AMP Adjustment (PD-168 Board) 6-46
46. Contrast Adjustment (PD-168 Board) 6-46
47. V-COM Level Adjustment (PD-168 Board) 6-47
48. V-COM Adjustment (PD-168 Board) 6-47
49. White Balance Adjustment (PD-168 Board) 6-48
6-2. Mechanism Section Adjustments 6-49
2-1. How to Enter Recod Mode Without Cassette 6-49
2-2. How to Enter Playback Mode Without Cassette 6-49
2-3. Tape Path Adjustment 6-49
6-3. Video Section Adjustments 6-50
3-1. Preparations before Adjustments 6-50
3-1-1.Equipment Required 6-50
3-1-2.Precautions on Adjusting 6-51
3-1-3. Adjusting Connectors 6-52
3-1-4. Connecting the Equipment 6-52
3-1-5. Alignment Tapes 6-53
3-1-6. Input/Output Level and Impedance 6-53
3-2. System Control System Adjustments 6-54
50. Initialization of $8, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, 1 \mathrm{~B}, 1 \mathrm{E}$, 1F Page Data 6-54
51. Touch Panel Adjustment 6-54
52. Node Unique ID No. Input 6-55
3-1. Input of Company ID 6-55
3-2. Input of Serial No, 6-55
3-3. Servo and RF System Adjustments 6-57
53. CAP FG Duty Adjustment (VC-288 Board) 6-57
54. PLL f_{0} \& LPF f_{0} Pre-Adjustment (VC-288 Board) 6-57
55. Switching Position Adjustment (VC-288 Board) 6-58
56. AGC Center Level and APC \& AEQ Adjustment 6-58
4-1. Preparations before Adjustments 6-58
4-2. AGC Center Level Adjustment (VC-288 Board) 6-59
4-3. APC \& AEQ Adjustment (VC-288 Board) 6-59
57. PLL fo \& LPF fo Final Adjustment (VC-288 Board) 6-60
3-4. Video System Adjustments 6-61
58. Chroma BPF fo Adjustment (DB-014 Board) 6-61
59. S VIDEO OUT Y Level Adjustment (DB-014 Board) 6-62
60. S VIDEO OUT Chroma Level Adjustment (DB-014 Board) 6-62
61. VIDEO OUT Level Check (DB-014 Board) 6-63
3-5. Audio System Adjustments 6-64
62. Playback Level Check 6-64
63. Overall Level Characteristics Check 6-64
64. Overall Distortion Check 6-64
65. Overall Noise Level Check 6-65
66. Overall Separation Check 6-65
6-4. Service Mode 6-66
4-1. Adjusting Remote Commander 6-66
67. Using the Adjustment Remote Commander 6-66
68. Precautions Upon Using the Adjustment Remote Commander 6-66
4-2. Data Process 6-67
4-3. Service Mode 6-68
69. Setting the Test Mode 6-68
70. Emergence Memory Address 6-68
2-1. C Page Emergence Memory Address 6-68
2-2. EMG Code (Emergency Code) 6-69
2-3. MSW Code 6-70
71. Bit Value Discrimination 6-71
Section Title Page
72. Jack Check (1) 6-71
73. Jack Check (2) 6-71
74. Switch Check 6-72
75. LED, LCD (Display Window) Check 6-72
76. Record of Use Check (1) 6-73
77. Record of Use Check (2) 6-73
78. Record of Self-diagnosis Check 6-74

* The color reproduction frame is shown on page 6-75

SECTION 6 ADJUSTMENTS

1. Before starting adjustments

EVR Data Re-writing Procedure When Replacing Board

The data that is stored in the repair board, is not necessarily correct.
Perform either procedure 1 or procedure 2 or procedure 3 when replacing board.

Procedure 1

Save the EVR data of the machine in which a board is going to be replaced. Download the saved data after a board is replaced.
(Machine before starting repair)

Save the EVR data
to a personal computer.

(Machine after a board is replaced)

Download the saved data to a machine.

Procedure 2

Remove the EEPROM from the board of the machine that is going to be repaired. Install the removed EEPROM to the replaced board.

Remove the EEPROM and install it.

(Former board)
(New board)

Procedure 3

When the data cannot be saved due to defective EEPROM, or when the EEPROM cannot be removed or installed, save the data from the same model of the same destination, and download it.
(Machine to be repaired)

(The same model of the same destination)

After the EVR data is saved and downloaded, check the respective items of the EVR data.
(Refer to page 6-3 for the items to be checked)

DCR-TRV940/TRV940E/TRV950/TRV950E

1-1. Adjusting items when replacing main parts and boards

- Adjusting items when replacing main parts

When replacing main parts, adjust the items indicated by - in the following table.

		Replaced part																								
		Block replacement										Mounted part replacement														
Adjustment Section	Adjustment	$\begin{aligned} & \text { U } \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \text { むu } \\ & \hline \end{aligned}$					LCD block LCD901 (LCD panel (LCD)	LCD block ND901				领	CD-389 board IC102, 103, $104 \quad$ (S/H)						VC-288 board IC1902							
Initialization of 8, A, B, C, D, E, F, $1 \mathrm{~B}, 1 \mathrm{E}, 1 \mathrm{~F}$ page data	Initialization of A, D page data																									
	Initialization of 8, C page data																									
	Initialization of E, F, 1E, 1F page data																									
	Initialization of B, 1B page data																									
Camera	$66 \mathrm{MHz} / 54 \mathrm{MHz}$ origin oscillation adj.													\bigcirc		-										
	HALL adj.	\bigcirc														\bigcirc										
	MR adj.	\bigcirc														\bigcirc										
	Flange back adj.	\bigcirc										\bigcirc														
	AWB standard data input											-	-		\bigcirc											
	MAX GAIN adj.											-	\bigcirc		\bigcirc											
	F No. \& ND light quality standard data input	\bigcirc																								
	LV standard data input											-	-		\bigcirc											
	Auto white balance adj.											-	\bigcirc		\bigcirc											
	Color reproduction adj.											-	-		\bigcirc											
	PSD sensor gain adj.	\bigcirc																						-		
	Angular velocity sensor sensitivity adj.	\bigcirc																						-		
	Mechanical shutter adj.	\bigcirc																								
	Strobe light level adj.		-																							
	Strobe white balance adj.		\bigcirc									\bigcirc	\bigcirc		\bigcirc											
	Hologram AF output adj.			\bigcirc																						
	Hologram AF angle check			\bigcirc																						
Color EVF	VCO adj.																				\bigcirc	-				
	RGB AMP adj.																				\bigcirc					
	Contrast adj.																\bigcirc				\bigcirc					
	Back light adj.																				\bigcirc		\bigcirc			
	White balance adj.					\bigcirc															\bigcirc		\bigcirc			
LCD	VCO adj.																								\bigcirc	\bigcirc
	RGB AMP adj.																								\bigcirc	
	Contrast adj.																\bigcirc								\bigcirc	
	V-COM level adj.																								\bigcirc	
	V-COM adj.						\bigcirc																		\bigcirc	
	White balance adj.						\bigcirc	\bigcirc																	\bigcirc	
System control	Touch panel adj.								\bigcirc																	
	Node uniqe ID No. input																									
Servo, RF	CAP FG duty adj.				-						\bigcirc															
	Switching position adj.				-					\bigcirc																
	AGC center level adj.				\bigcirc					\bigcirc								\bigcirc	\bigcirc							
	APC \& AEQ adj.				\bigcirc					\bigcirc								\bigcirc	\bigcirc							
	PLL f_{0} \& LPF $\mathrm{f}_{0} \mathrm{adj}$.				\bigcirc					\bigcirc								-	-							
Video	Chroma BPF fo adj.																			\bigcirc						
	S VIDEO OUT Y level adj.																			\bigcirc						
	S VIDEO OUT chroma level adj.																			\bigcirc						
Mechanism	Tape path adj.				-1					- \|	-															

Table 6-1-1 (1)

Note 1: When replacing the drum assy or mechanism deck, reset the drum rotation counted time. (Refer to "Record of Use Check" of " $6-4$. SERVICE MODE")

- Adjusting items when replacing a board or EEPROM

When replacing a board or EEPROM, adjust the items indicated by in the following table.

Note 2: DCR-TRV950/TRV950E only
Note 3: After BT-003 board is replaced, check the "Info." is correctly displayed with the following procedure.

1) Turn the power switch to "MEMORY/NETWORK".
2) Press the "NETWORK" button.
3) Select/Execute the "Setup" at the network menu.
4) Select/Execute the "Bluetooth" at the network menu.
5) Select/Execute the "Info." at the network menu.
6) Check that the following information is displayed.

Name SONY DCR-TRV950 (or DCR-TRV950E)
Address $08: 00: 46: \mathrm{XX}: \mathrm{XX}: \mathrm{XX}$
Note 4: When VC-288 board is replaced, before and after the replacement, execute "Initializing of Network Setting Data" and initialize network personal information (mail address, bookmark).
(DCR-TRV950/TRV950E only)
(Refer to "1-2-4. Initialization of B, 1B Page Data")

DCR-TRV940/TRV940E/TRV950/TRV950E

6-1. CAMERA SECTION ADJUSTMENTS

1-1. PREPARATIONS BEFORE ADJUSTMENTS (CAMERA SECTION)

1-1-1. List of Service Tools

- Oscilloscope
- Regulated power supply
- Color monitor
- Digital voltmeter
- Vectorscope
- Frequency counter

Ref. No.	Name	Parts Code	Usage
J-1	Filter for color temperature correction (C14)	J-6080-058-A	Auto white balance adjustment/check White balance adjustment/check
J-2	ND filter 1.0	J-6080-808-A	White balance check
	ND filter 0.4	J-6080-806-A	White balance check
	ND filter 0.1	J-6080-807-A	White balance check
J-3	Pattern box PTB-450	J-6082-200-A	
J-4	Color chart for pattern box	J-6020-250-A	
J-5	Adjustment remote commander (RM-95 upgraded). (Note)	J-6082-053-B	
J-6	Siemens star chart	J-6080-875-A	For checking the flange back
J-7	Clear chart for pattern box	J-6080-621-A	
J-8	CPC-8 jig	J-6082-388-A	For adjusting the video section For adjusting the color viewfinder
J-9	Extension cable (60 P, 0.5 mm)	J-6082-466-A	For extension between the CD-389 board (CN100) and VC-288 board (CN1201)
J-10	Mini pattern box	J-6082-353-B	For adjusting the flange back
J-11	Camera table	J-6082-384-A	For adjusting the flange back
J-12	CPC-jig for LCD panel	J-6082-529-A	For adjusting the LCD system
J-13	Background paper	J-2501-130-A	

Note 1: If the micro processor IC in the adjustment remote commander is not the new micro processor (UPD7503G-C56-12), the pages cannot be switched. In this case, replace with the new micro processor (8-759-148-35).

Fig. 6-1-1

1-1-2. Preparations

Note 1: For details of how remove the cabinet and boards, refer to " 2 . DISASSEMBLY".
Note 2: When performing only the adjustments, the lens block and boards need not be disassembled.
Note 3: Before perform the adjustment, check that the data of page: 0 , address: 10 is " 00 ".
If not, select page: 0 , address: 10 , and set data " 00 ".

1) Connect the equipment for adjustments according to Fig. 6-1-3.

Note 4: As removing the cabinet (R) (removing the CK-116 board CN5203) means removing the lithium 3 V power supply (BT5201), data such as date, time, user-set menus will be lost. After completing adjustments, reset these data. If the NS-014 board has been removed, the self-diagnosis data, data on history of use (total drum rotation time, etc.) will not be lost. (Refer to "SELF-DIAGNOSIS FUNCTION" for the self-diagnosis data, and to "6-4. Service Mode" for the data on the history use)

Note 5: Setting the "Forced Camera Power ON" Mode

1) Select page: 0, address: 01, and set data: 01 .
2) Select page: D, address: 10, set data: 01, and press the PAUSE button of the adjustment remote commander.
The above procedure will enable the camera power to be turned on with the power switch (PS-1870 block) removed. After completing adjustments, be sure to exit the "Forced Camera Power ON Mode".

Note 6: Exiting the "Forced Camera Power ON" Mode

1) Select page: 0, address: 01, and set data: 01.
2) Select page: D, address: 10, set data: 00, and press the PAUSE button of the adjustment remote commander.
3) Select page: 0, address: 01, and set data: 00 .

Fig. 6-1-2

Fig. 6-1-3

1-1-3. Precaution

1. Setting the Switch

Unless otherwise specified, set the switches as follows and perform adjustments without loading cassette.

1. POWER switch (PS-1870 block) ...
2. FOCUS (FP-504 flexible)
3. BACK LIGHT (CK-116 board) OFF
4. SPOT LIGHT (CK-116 board) OFF
5. ZEBRA (CK-116 board) .. OFF
6. PROGRAM AE (KP-1870 block) OFF
7. SHUTTER SPEED (KP-1870 block) AUTO

2. Order of Adjustments

Basically carry out adjustments in the order given.

Fig. 6-1-4

3. Subjects

1) Color bar chart (Color reproduction adjustment frame)

When performing adjustments using the color bar chart, adjust the picture frame as shown in Fig. 6-1-4. (Color reproduction adjustment frame)
2) Clear chart (Color reproduction adjustment frame)

Remove the color bar chart from the pattern box and insert a clear chart in its place. (Do not perform zoom operations during this time)
3) Chart for flange back adjustment

Join together a piece of white A0 size paper $(1189 \mathrm{~mm} \times 841$ mm) and a piece of black paper to make the chart shown in Fig. 6-1-5.

Note: Use a non-reflecting and non-glazing vellum paper. The size must be A0 or larger and the joint between the white and black paper must not have any undulations.

Fig. 6-1-5

DCR-TRV940/TRV940E/TRV950/TRV950E

4. Preparing the Flash Adjustment Box

A dark room is required to provide an accurate flash adjustment. If it is not available, prepare the flash adjustment box as given below;

1) Provide woody board A, B and C of 15 mm thickness.

Fig. 6-1-6
2) Apply black mat paint to one side of woody board A and B.
3) Attach background paper (J-2501-130-A) to woody board C.
4) Assemble so that the black sides and the background paper side of woody board A, B and C are internal. (Fig. 6-1-7)

Fig. 6-1-7

1-2. INITIALIZATION OF 8, A, B, C, D, E, F, 1B, 1E, 1F PAGE DATA

Note 1: If reading/writing data on pages $1 \mathrm{~B}, 1 \mathrm{E}, 1 \mathrm{~F}$, set data: 01 to page: 0 , address: 10 , and then select pages $\mathrm{B}, \mathrm{E}, \mathrm{F}$. By this data setting, the pages $1 \mathrm{~B}, 1 \mathrm{E}, 1 \mathrm{~F}$ can be selected. After the data reading/writing finished, return the data on page: 0 , address: 10 to " 00 ".

[Connection of power supply for data initialization]

1) Connect the regulated power supply and a digital voltmeter, as shown in Fig. 6-1-8.
2) Adjust the output voltage of the regulated power supply so that the digital voltmeter indicates $6.0 \pm 0.1 \mathrm{Vdc}$.
3) Turn off the power switch.
4) Turn on the HOLD switch of the adjusting remote commander.
5) Turn on the power switch.
6) Initialize the data.

Note 2: Though the following message will be displayed on the LCD screen, this is normal.
"Use info lithium battery"

[Adjusting Procedure]

1. Initialaizing of A, D Page Data
2. Initialaizing of $8, C$ Page Data
3. Initialaizing of $\mathrm{E}, \mathrm{F}, 1 \mathrm{E}, 1 \mathrm{~F}$ Page Data
4. Initialaizing of $\mathrm{B}, 1 \mathrm{~B}$ Page Data

Fig. 6-1-8

1-2-1. Initialization of A, D Page Data

Note: Check that the data of page: 0 , address: 10 is " 00 ".

1. Initializing of A, D Page Data

Note 1: If the A, D page data has been initialized, the following adjustments need to be performed again.

1) Modification of A, D page data
2) Touch panel adjustment

Note 2: Check that the voltage of power supply is $6.0 \pm 0.1 \mathrm{Vdc}$.
Note 3: NTSC model: DCR-TRV940/TRV950
PAL model: DCR-TRV940E/TRV950E

Adjustment Page	A
Adjustment Address	10 to FF
Adjustment Page	D
Adjustment Address	10 to 7F

A page initializing method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	0	10	00	
3	7	03		Set the following data 07: NTSC model 87: PAL model
4	7	00	20	
5	7	01	20	Press PAUSE button.
6	7	02		Check the data changes to "01".
7	2	00	29	
8	2	01	29	Press PAUSE button.
9				Perform "Modification of A, D Page Data"

D page initializing method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	0	10	00	
3	7	03		Set the following data 07: NTSC model 87: PAL model
4	7	00	22	
5	7	01	22	Press PAUSE button.
6	7	02		Check the data changes to "01".
7	2	00	29	
8	2	01	29	Press PAUSE button.
9				Perform "Modification of A, D Page Data"

2. Modification of A, D Page Data

If the A, D page data has been initialized, change the data of the"Fixed data-2" address shown in the following table by manual input.

Modifying Method:

1) Before changing the data, select page: 0 , address: 01 , and set data: 01.
2) New data for changing are not shown in the tables because they are different in destination. When changing the data, copy the data built in the same model.
Note 1: If copy the data built in the different model, the camcorder may not operate.
3) When changing the data, press the PAUSE button of the adjustment remote commander each time when setting new data to write the data in the non-volatile memory.
4) Check that the data of adjustment addresses is the initial value. If not, change the data to the initial value.

Processing after Completing Modification A, D page data:

Order	Page	Address	Data	Procedure
1	2	00	29	
2	2	01	29	Press PAUSE button.

Note 2: If the following symptoms occur after completing of the"Modification A, D page data", check that the data of the "Fixed data-2" addresses of A, D page are same as those of the same model of the same destination.

1) "E: 20: 00" of self-diagnosis code on LCD screen is flashing.
2) The power is shut off so that unit cannot operate.

3. A Page table

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".
Note 2: Fixed data-1: Initialized data. (Refer to "1. Initializing the A, D Page Data")
Fixed data-2: Modified data. (Refer to " 2 . Modification of A, D Page Data")

Address	Initial	value	Remark	
	NTSC	PAL		
10 to 17	Fixed data-1 (Initialized data)			
18	Fixed data-2			
19 to 2A	Fixed data-1 (Initialized data)			
2B	Fixed data-2			
2C to 2E	Fixed data-1 (Initialized data)			
2 F	Fixed data-2			
30 to 41	Fixed data-1 (Initialized data)			
42	Fixed data-2			
43 to 51	Fixed data-1 (Initialized data)			
52	Fixed data-2			
53	Fixed data-1 (Initialized data)			
54	Fixed data-2			
55 to 5C	Fixed data-1 (Initialized data)			
5D			Fixed data-2 (TRV950/TRV950E)	
			Fixed data-1 (TRV940/TRV940E)	
5E to 61			Fixed data-1 (Initialized data)	
62	Fixed data-2			
63				
64 to 8F	Fixed data-1 (Initialized data)			
90	DA	DB	Touch panel adj.	
91	27	25		
92	E1	DA		
93	1C	23		
94 to CF	Fixed data-1 (Initialized data)			
D0	Fixed data-2			
D1				
D2 to FF	Fixed data-1 (Initialized data)			

4. D Page table

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".
Note 2: Fixed data-1: Initialized data. (Refer to "1. Initializing the A, D Page Data")
Fixed data-2: Modified data. (Refer to " 2 . Modification of A, D Page Data")

Address	Initial value		Remark
	NTSC	PAL	
10	00	00	Test mode
11			Fixed data-1 (Initialized data)
12			Fixed data-2
13 to 15			Fixed data-1 (Initialized data)
16			Fixed data-2
17 to 21			Fixed data-1 (Initialized data)
22			
23			
24			Fixed data-2
25			
26			
27 to 29			Fixed data-1 (Initialized data)
2 A			
2B			Fixed data-2
2C to 36			Fixed data-1 (Initialized data)
37			Fixed data-2
38, 39			Fixed data-1 (Initialized data)
3A			Fixed data-2
3B to 50			Fixed data-1 (Initialized data)
51			
52			xed data
53			Fixed data-
54			
55, 56			Fixed data-1 (Initialized data)
57			Fixed data-2
58			Fixed data-1 (Initialized data)
59			
5A			
5B			
5C			Fixed data-2
5D			
5E			
5F			
60			Fixed data-2 (TRV950/TRV950E)
61			Fixed data-1 (TRV940/TRV940E)
62 to 7F			Fixed data-1 (Initialized data)

1-2-2. Initialization of 8, C Page Data

Note: Check that the data of page: 0 , address: 10 is " 00 ".

1. Initializing of 8, C Page Data

Note1: If "Initialization of Pages 8, C " is executed, all data on pages 8, C are initialized. (Only an individual page cannot be initialized)
Note 2: If the 8, C page data has been initialized, the following adjustments need to be performed again.

1) Modification of $8, \mathrm{C}$ page data
2) Color electronic viewfinder system adjustments
3) LCD system adjustments
4) Node unique ID No. input
5) Servo, RF system adjustments
6) Video system adjustments

Note 3: Check that the voltage of power supply is $6.0 \pm 0.1 \mathrm{Vdc}$.

Adjustment Page	8
Adjustment Address	00 to A3
Adjustment Page	C
Adjustment Address	10 to FF

Initializing method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	0	10	00	
3	3	81		Check the data changes to "00".
4	3	80	0 C	Press PAUSE button.
5	3	80		Check the data changes to "1C".
6				Perform "Modification of 8, C Page Data"

2. Modification of 8, C Page Data

If the $8, \mathrm{C}$ page data has been initialized, change the data of the "Fixed data-2" address shown in the following table by manual input.

Modifying Method:

1) Before changing the data, select page: 0 , address: 01 , and set data: 01.
2) New data for changing are not shown in the tables because they are different in destination. When changing the data, copy the data built in the same model.
Note: If copy the data built in the different model, the camcorder may not operate.
3) When changing the data, press the PAUSE button of the adjustment remote commander each time when setting new data to write the data in the non-volatile memory.
4) Check that the data of adjustment addresses is the initial value. If not, change the data to the initial value.

Processing after Completing Modification 8, C page data:

Order	Page	Address	Data	Procedure
1	2	00	29	
2	2	01	29	Press PAUSE button.

3. 8 Page table

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".
Note 2: Fixed data-1: Initialized data. (Refer to "1. Initializing the 8, C Page Data")
Fixed data-2: Modified data. (Refer to " 2 . Modification of 8, C Page Data")

Address	Initial value		Remark	
	NTSC	PAL		
00 to 2E	Fixed data-1 (Initialized data)			
2 F	Fixed data-2			
30 to 3A	Fixed data-1 (Initialized data)			
3B	Fixed data-2			
3C to 49	Fixed data-1 (Initialized data)			
4A	Fixed data-2			
4B to 51	Fixed data-1 (Initialized data)			
52	Fixed data-2			
53 to 79	Fixed data-1 (Initialized data)			
7A	Fixed data-2			
7B				
7C				
7D				
7E				
7F				
80				
81				
82				
83				
84				
85 to 89	Fixed data-1 (Initialized data)			
8A	Fixed data-2			
8B	Fixed data-1 (Initialized data)			
8C	08	08	Node unique ID No. input	
8D	00	00		
8E	46	46		
8F	01	01		
90	02	02		
91	00	00		
92	00	00		
93	00	00		
94 to 99	Fixed data-1 (Initialized data)			
9A	Fixed data-2			
9B				
9C			Fixed data-1 (Initialized data)	
9D	Fixed data-2			
9E				
9F				
A0				
A1				
A2				
A3			Fixed data-1 (Initialized data)	

4. C Page table

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".
Note 2: Fixed data-1: Initialized data. (Refer to "1. Initializing the 8, C Page Data")
Fixed data-2: Modified data. (Refer to " 2 . Modification of 8, C Page Data")

Address	Initial value		Remark
	NTSC	PAL	
10	EE	EE	Switching position adj.
11	00	00	
12	00	00	
13	00	00	
14, 15			Fixed data-1 (Initialized data)
16	E0	E0	CAP FG duty adj.
17			Fixed data-1 (Initialized data)
18	2A	2A	APC \& AEQ adj.
19	2 A	2A	
1A			Fixed data-1 (Initialized data)
1B	32	32	APC \& AEQ adj.
1 C	32	32	
1D			Fixed data-1 (Initialized data)
1E	25	25	AGC center level adj.
1F	3E	3E	PLL f_{0} \& LPF $\mathrm{f}_{0} \mathrm{adj}$.
20	3E	3E	
21	DC	DC	APC \& AEQ adj.
22	99	99	PLL f_{0} \& LPF $\mathrm{f}_{0} \mathrm{adj}$.
23, 24			Fixed data-1 (Initialized data)
25	88	88	S VIDEO OUT Y level adj.
26	E3	E3	S VIDEO OUT chroma level adj.
27	A1	A1	
28	04	04	Chroma BPF $\mathrm{f}_{0} \mathrm{adj}$.
29	20	20	PLL f_{0} \& LPF $\mathrm{f}_{0} \mathrm{adj}$.
2A, 2B	Fixed data-1 (Initialized data)		
2C	03	03	APC \& AEQ adj.
2D to 4E			Fixed data-1 (Initialized data)
4F	64	64	Back light adj. (EVF)
50	CA	CA	
51	5D	7D	VCO adj. (EVF)
52	5D	7D	
53	Fixed data-2		
54	AC	AC	RGB AMP adj. (EVF)
55	Fixed data-1 (Initialized data)		
56	80	80	White balance adj. (EVF)
57	80	80	
58	1D	1D	Contrast adj. (EVF)
59			Fixed data-1 (Initialized data)
5A			Fixed data-2
5B			
5C			
5D			
5E			

C Page table

Address	Initial value		Remark	
	NTSC	PAL		
C5	Fixed data-2			
C6				
C7, C8			Fixed data-1 (Initialized data)	
C9			Fixed data-2	
CA				
CB				
CC				
CD				
CE				
CF, D0			Fixed data-1 (Initialized data)	
D1			Fixed data-2	
D2				
D3				
D4			Fixed data-1 (Initialized data)	
D5			Fixed data-2	
D6				
D7			Fixed data-1 (Initialized data)	
D8			Fixed data-2	
D9				
DA				
DB				
DC				
DD				
DE				
DF to E1			Fixed data-1 (Initialized data)	
E2			Fixed data-2	
E3				
E4, E5			Fixed data-1 (Initialized data)	
E6			Fixed data-2	
E7			Fixed data-1 (Initialized data)	
E8			Fixed data-2	
E9 to F3			Fixed data-1 (Initialized data)	
F4	00	00	Emergency memory address	
F5	00	00		
F6	00	00		
F7	00	00		
F8	00	00		
F9	00	00		
FA	00	00		
FB	00	00		
FC	00	00		
FD	00	00		
FE	00	00		
FF	00	00		

1-2-3. Initialization of E, F, 1E, 1F Page Data
Note: If reading/writing data on pages $1 \mathrm{E}, 1 \mathrm{~F}$, set data: 01 to page: 0 , address: 10 , and then select pages E, F. By this data setting, the pages $1 \mathrm{E}, 1 \mathrm{~F}$ can be selected. After the data reading/writing finished, return the data on page: 0 , address: 10 to " 00 ".

1. Initializing of $E, F, 1 E, 1 F$ Page Data

Note 1: If "Initialization of Pages E, F, 1E, 1F" is executed, all data on pages $\mathrm{E}, \mathrm{F}, 1 \mathrm{E}, 1 \mathrm{~F}$ are initialized. (Only an individual page cannot be initialized)
Note 2: If the E, F, 1E, 1F page data has been initialized, the following adjustments need to be performed again.

1) Modification of E, F, 1E, 1F page data
2) Camera system adjustments

Note 3: Check that the voltage of power supply is $6.0 \pm 0.1 \mathrm{Vdc}$.
Note 4: NTSC model: DCR-TRV940/TRV950
PAL model: DCR-TRV940E/TRV950E

Adjustment Page	E
Adjustment Address	00 to FF
Adjustment Page	F
Adjustment Address	10 to FF
Adjustment Page	1 E
Adjustment Address	00 to C3
Adjustment Page	1 F
Adjustment Address	00 to FF

Initializing method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	0	10	00	
3	6	01		Set the following data, and press PAUSE button. 2D: NTSC model 2F: PAL model
4	6	03	01	Press PAUSE button.
5	6	02		Check the data changes to "01".
6				Perform "Modification of E, F, 1E, 1F Page Data"

2. Modification of E, F, 1E, 1F Page Data

If the $\mathrm{E}, \mathrm{F}, 1 \mathrm{E}, 1 \mathrm{~F}$ page data has been initialized, change the data of the "Fixed data-2" address shown in the following table by manual input.

Modifying Method:

1) Before changing the data, select page: 0 , address: 01 , and set data: 01.
2) If modification of data on pages E, F, set data: 01 to page: 0 , address: 00 , and then select pages E, F.
3) If modification of data on pages $1 \mathrm{E}, 1 \mathrm{~F}$, set data: 01 to page: 0 , address: 10 , and then select pages E, F. After the modification of data finished, return the data on page: 0 , address: 10 to " 00 ".
4) New data for changing are not shown in the tables because they are different in destination. When changing the data, copy the data built in the same model.
Note: If copy the data built in the different model, the camcorder may not operate.
5) When changing the data, press the PAUSE button of the adjustment remote commander each time when setting new data to write the data in the non-volatile memory.
6) Check that the data of adjustment addresses is the initial value. If not, change the data to the initial value.

Processing after Completing Modification E, F, 1E, 1F page data:

Order	Page	Address	Data	Procedure
1	0	10	00	
2	2	00	29	
3	2	01	29	Press PAUSE button.
4				Perform "66MHz/54MHz Origin Oscillation Adjust- ment" of "CAMERA SYSTEM ADJUSTMENTS"

3. E Page table

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".
Note 2: Fixed data-1: Initialized data. (Refer to "1. Initializing the E, F, 1E, 1F Page Data")
Fixed data-2: Modified data. (Refer to " 2 . Modification of E, F, 1E, 1F Page Data")

Address	Initial value		Remark	
	NTSC	PAL		
00 to 10			Fixed data-1 (Initialized data)	
11	Fixed data-2			
12				
13				
14				
15 to 19			Fixed data-1 (Initialized data)	
1A			Fixed data-2	
1B, 1C			Fixed data-1 (Initialized data)	
1D	Fixed data-2			
1E				
1F				
20			Fixed data-1 (Initialized data)	
21	Fixed data-2			
22				
23				
24 to 2A			Fixed data-1 (Initialized data)	
2B	Fixed data-2			
2 C				
2D to 33			Fixed data-1 (Initialized data)	
34			Fixed data-2	
35 to 38			Fixed data-1 (Initialized data)	
39	Fixed data-2			
3A				
3B, 3C			Fixed data-1 (Initialized data)	
3D	Fixed data-2			
3E				
3 F to 57			Fixed data-1 (Initialized data)	
58	Fixed data-2			
59				
5A to 5D			Fixed data-1 (Initialized data)	
5 E			Fixed data-2	
5F, 60			Fixed data-1 (Initialized data)	
61	Fixed data-2			
62				
63				
64				
65				
66				
67, 68			Fixed data-1 (Initialized data)	
69			Fixed data-2	
6A			Fixed data-1 (Initialized data)	
6B			Fixed data-2	
6C to 6E			Fixed data-1 (Initialized data)	

Address	Initial value		Remark	
	NTSC	PAL		
6F	Fixed data-2			
70				
71			Fixed data-1 (Initialized data)	
72			Fixed data-2	
73			Fixed data-1 (Initialized data)	
74			Fixed data-2	
75			Fixed data-1 (Initialized data)	
76			Fixed data-2	
77, 78			Fixed data-1 (Initialized data)	
79			Fixed data-2	
7A				
7B				
7 C				
7D to 94			Fixed data-1 (Initialized data)	
95	Fixed data-2			
96				
97 to B2			Fixed data-1 (Initialized data)	
B3			Fixed data-2	
B4 to C6			Fixed data-1 (Initialized data)	
C7			Fixed data-2	
C8				
C9				
CA to CC			Fixed data-1 (Initialized data)	
CD			Fixed data-2	
CE				
CF to E2			Fixed data-1 (Initialized data)	
E3			Fixed data-2	
E4				
E5 to FF			Fixed data-1 (Initialized data)	

4. F Page table

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".
Note 2: Fixed data-1: Initialized data. (Refer to "1. Initializing the E, F, 1E, 1F Page Data")
Fixed data-2: Modified data. (Refer to " 2 . Modification of E, F, 1E, 1F Page Data")

Address	Initial value		Remark
	NTSC	PAL	
10	40	40	$66 \mathrm{MHz} / 54 \mathrm{MHz}$ origin oscillation adj.
11, 12			Fixed data-1 (Initialized data)
13	80	80	Hall adj.
14	90	90	
15	18	18	
16	75	75	
17	4A	4A	
18	89	89	
19	80	80	MAX GAIN adj.
1A	80	80	LV standard data input
1B	7A	7A	
1C	80	80	F No. \& ND light quality standard data input
1D	80	80	
1E	80	80	
1F	80	80	
20	80	80	
21	80	80	
22	80	80	
23	80	80	
24 to 29			Fixed data-1 (Initialized data)
2A	14	14	AWB standard data input
2B	17	17	
2 C	04	04	
2D	79	79	
2E to 35	Fixed data-1 (Initialized data)		
36	2D	2D	Strobe white balance adj.
37	64	64	
38	00	01	Color reproduction adj.
39	EF	E8	
3A	1E	1B	
3B	2F	24	
3C			Fixed data-2
3D			
3E			
3F			
40	0A	0A	Auto white balance adj.
41	19	19	
42	07	07	
43	DD	DD	
44 to 5F	Fixed data-1 (Initialized data)		
60	11	11	Flange back adj.
61	EB	EB	
62	53	53	

Address	Initial value		Remark
	NTSC	PAL	
63	0A	0A	Flange back adj.
64	1 E	1E	
65	AC	AC	
66	00	00	
67	00	00	
68	00	00	
69	00	00	
6A	86	86	
6B	19	19	
6C	19	19	
6D	38	38	
6 E	00	00	
6F	00	00	
70	00	00	MR adj./Flange back adj.
71	80	80	MR adj.
72	80	80	
73	80	80	
74	80	80	
75	40	40	
76	C0	C0	
77	40	40	
78	C0	C0	
79	40	40	
7A	C0	C0	
7B	40	40	
7C	C0	C0	
7D	20	20	Hologram AF output adj.
7 E	00	00	
7F	00	00	
80	00	00	
81	00	00	
82	00	00	
83	00	00	
84	80	80	PSD sensor gain adj.
85	80	80	
86	50	50	Angular velocity sensor sensitivity adj.
87	50	50	
88, 89			Fixed data-1 (Initialized data)
8A	01	01	Strobe light level adj.
8B	E0	E0	
8C	80	80	
8D	80	80	
8E	80	80	
8F	20	20	
90	00	00	Mechanical shutter adj.
91	00	00	
92	00	00	
93	00	00	

F Page table

Address	Initial value		Remark	
	NTSC	PAL		
94	00	00	Mechanical shutter adj.	
95	00	00		
96	00	00		
97	00	00		
98	00	00		
99	00	00		
9A	00	00		
9B	00	00		
9C	00	00		
9D	00	00		
9E	00	00		
9 F	00	00		
A0	00	00		
A1	00	00		
A2	00	00		
A3	00	00		
A4	00	00		
A5	00	00		
A6 to B3	Fixed data-1 (Initialized data)			
B4			Fixed data-2	
B5			Fixed data-1 (Initialized data)	
B6	Fixed data-2			
B7				
B8 to C4			Fixed data-1 (Initialized data)	
C5			Fixed data-2	
C6 to FF			Fixed data-1 (Initialized data)	

5. 1E Page table

Note 1: If reading/writing data on pages 1E, set data: 01 to page: 0 , address: 10 , and then select pages E. By this data setting, the pages 1 E can be selected.
After the data reading/writing finished, return the data on page: 0 , address: 10 to " 00 ".
Note 2: Fixed data-1: Initialized data. (Refer to "1. Initializing the E, F, 1E, 1F Page Data")
Fixed data-2: Modified data. (Refer to " 2 . Modification of E, F, 1E, 1F Page Data")

Address	Initial	value	Remark	
	NTSC	PAL		
00	Fixed data-2			
01 to 07			Fixed data-1 (Initialized data)	
08	Fixed data-2			
09				
0A to 14			Fixed data-1 (Initialized data)	
15			Fixed data-2	
16 to 1 F			Fixed data-1 (Initialized data)	
20			Fixed data-2	
21			Fixed data-1 (Initialized data)	
22			Fixed data-2	
23				
24				
25				
26				
27 to 2B			Fixed data-1 (Initialized data)	
2C			Fixed data-2	
2D				
2E				
2F to 33			Fixed data-1 (Initialized data)	
34			Fixed data-2	
35 to 48			Fixed data-1 (Initialized data)	
49			Fixed data-2	
4A, 4B			Fixed data-1 (Initialized data)	
4C			Fixed data-2	
4D				
4E			Fixed data-1 (Initialized data)	
4F			Fixed data-2	
50 to 53			Fixed data-1 (Initialized data)	
54			Fixed data-2	
55				
56 to 5B			Fixed data-1 (Initialized data)	
5C			Fixed data-2	
5D			Fixed data-1 (Initialized data)	
5E			Fixed data-2	
5F				
60 to 63			Fixed data-1 (Initialized data)	
64			Fixed data-2	
65				
66 to 69			Fixed data-1 (Initialized data)	
6A			Fixed data-2	

Address	Initial value	
	NTSC	PAL

6. 1F Page table

Note 1: If reading/writing data on pages 1 F , set data: 01 to page: 0 , address: 10 , and then select pages F. By this data setting, the pages 1 F can be selected.
After the data reading/writing finished, return the data on page: 0 , address: 10 to " 00 ".
Note 2: Fixed data-1: Initialized data. (Refer to "1. Initializing the E, F, 1E, 1F Page Data")
Fixed data-2: Modified data. (Refer to "2. Modification of E, F, 1E, 1F Page Data")

1-2-4. Initialization of B, 1B Page Data

Note: If reading/writing data on pages 1 B , set data: 01 to page: 0 , address: 10 , and then select pages B. By this data setting, the pages 1 B can be selected.
After the data reading/writing finished, return the data on page: 0 , address: 10 to " 00 ".

1. Initializing of $B, 1 B$ Page Data

Note 1: If "Initialization of Pages B, 1B" is executed, all data on pages $\mathrm{B}, 1 \mathrm{~B}$ are initialized. (Only an individual page cannot be initialized)
Note 2: If the B, 1B page data has been initialized, the following adjustments need to be performed again.

1) Modification of B, 1B page data

Note 3: Check that the voltage of power supply is $6.0 \pm 0.1 \mathrm{Vdc}$.

Adjustment Page	B
Adjustment Address	00 to FF
Adjustment Page	1B
Adjustment Address	00 to FF

Initializing method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	0	10	00	
3	5	02	FF	
4	5	01	F3	Press PAUSE button.
5	5	00	01	Press PAUSE button.
6	5	02		Check the data changes to " 00 ".
7	5	0 E	00	Press PAUSE button.
8	5	03	20	Press PAUSE button.
9	5	01	FA	Press PAUSE button.
10	5	00	01	Press PAUSE button.
11	5	0 E		Check the data changes to " 01 ".
12				Turn off the power supply, then turn on them again.
13				Perform "Modification of B Page Data"

2. Modification of $B, 1 B$ Page Data

If the $B, 1 B$ page data has been initialized, change the data of the "Fixed data-2" address shown in the following table by manual input.

Modifying Method:

1) Before changing the data, select page: 0 , address: 01 , and set data: 01.
2) If modification of data on pages B, set data: 01 to page: 0 , address: 00 , and then select pages B.
3) If modification of data on pages 1 B , set data: 01 to page: 0 , address: 10 , and then select pages B. After the modification of data finished, return the data on page: 0 , address: 10 to " 00 ".
4) New data for changing are not shown in the tables because they are different in destination. When changing the data, copy the data built in the same model.
Note: If copy the data built in the different model, the camcorder may not operate.
5) When changing the data, press the PAUSE button of the adjustment remote commander each time when setting new data to write the data in the non-volatile memory.
6) Check that the data of adjustment addresses is the initial value. If not, change the data to the initial value.

Processing after Completing Modification B page data:

Order	Page	Address	Data	Procedure
1	2	00	29	
2	2	01	29	Press PAUSE button.

3. B Page table

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".
Note 2: Fixed data-1: Initialized data. (Refer to "1. Initializing the B, 1B Page Data")
Fixed data-2: Modified data. (Refer to "2. Modification of B, 1B Page Data")

Address	Initial value	
	RTSC	PAL

4. 1B Page table

Note 1: If reading/writing data on pages 1 B , set data: 01 to page: 0 , address: 10, and then select pages B. By this data setting, the pages 1B can be selected.
After the data reading/writing finished, return the data on page: 0 , address: 10 to " 00 ".
Note 2: Fixed data-1: Initialized data. (Refer to "1. Initializing the B, 1B Page Data")
Fixed data-2: Modified data. (Refer to " 2 . Modification of B, 1B Page Data")

Address	Initial value		
	NTSC	PAL	
00 to FF	Fixed data-1 (Initialized data)		

5. Initializing of Network Setting Data (DCR-TRV950/TRV950E)

Initializing method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	0	10	00	
3	5	01	E7	Press PAUSE button.
4	5	09	80	Press PAUSE button.
5	5	0 A		Set the following data, and press PAUSE button. 01: CND, E, HK, AU model 03: US model 04: AEP, UK, EE, NE, RU model
6	5	00	01	Press PAUSE button.
7	5	0 E		Check the data is "00".

- Abbreviation

AUS : Australian model
CND : Canadian model
EE : East European model
HK : Hong Kong model
NE : North European model
RU : Russian model

1-3. CAMERA SYSTEM ADJUSTMENTS
Before perform the camera system adjustments, check that the specified values of "VIDEO SYSTEM ADJUSTMENTS" are satisfied. (Except " $66 \mathrm{MHz} / 54 \mathrm{MHz}$ Origin Oscillation Adjustment") Check that the data of page: 0 , address: 10 is " 00 ".
If not, select page: 0 , address: 10 , and set the data " 00 ".

1. $66 \mathrm{MHz} / 54 \mathrm{MHz}$ Origin Oscillation Adjustment (VC-288 board)

Set the frequency of the clock for synchronization.
If deviated, the synchronization will be disrupted and the color will become inconsistent.

Subject	Not required
Measurement Point	Pin ©6 of IC1202 (R1209)
Measuring Instrument	Frequency counter
Adjustment Page	F
Adjustment Address	10
Specified value	$\mathrm{f}=33000000 \pm 165 \mathrm{~Hz}$ (NTSC) $\mathrm{f}=27000000 \pm 135 \mathrm{~Hz}$ (PAL)

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".
Note 2: NTSC model: DCR-TRV940/TRV950
PAL model: DCR-TRV940E/TRV950E
Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	F	10		Change the data and set the frequency (f) to the specified value.
3	F	10		Press PAUSE button.
4	0	01	00	

Fig. 6-1-9

2. HALL Adjustment RedarW

For detecting the position of lens iris and ND filter, adjust the hall AMP gain and offset.

Subject	Not required
Measurement Point	Displayed data of page: 1 (Note 1)
Measuring Instrument	Adjusting remote commander
Adjustment Page	F
Adjustment Address	13 to 18
Specified value 1	14 to 18
Specified value 2	84 to 88
Specified value 3	84 to 88
Specified value 4	14 to 18

Note 1: The right four digits of the page: 1 displayed data of the adjusting remote commander.
$1: \underline{\mathrm{XX}}: \underline{\mathrm{XX}}$
\qquad IRIS displayed data ND displayed data

Note 2: Check that the data of page: 0 , address: 10 is " 00 ".
Note 3: Check that the data of page: 6 , address: 02 is " 00 ". If not, turn the power of unit OFF/ON.

Switch setting

1) POWER \qquad CAMERA

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	6	94	16	
3	6	95	86	
4	6	01	6 D	Press PAUSE button. (Note 4)
5	6	02		Check the data changes to "01".
6	6	01	00	Press PAUSE button.

Note 4: The adjustment data will be automatically input to page: F, address: 13 to 18 .

Checking method:

Order	Page	Address	Data	Procedure
1	0	03	03	
2	6	01	01	Press PAUSE button.
3	1			Check that the IRIS dis- played data (Note 1) satisfied the specified value 1.
4	6	01	03	Press PAUSE button.
5	1			Check that the IRIS dis- played data (Note 1) satisfied the specified value 2.
6	6	01	69	Press PAUSE button.
7	1			Check that the ND displayed data (Note 1) satisfied the specified value 3.
8	6	01	6 6	Press PAUSE button.
9	1			Check that the ND displayed data (Note 1) satisfied the specified value 4.

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	6	01	00	Press PAUSE button.
2	6	94	00	
3	6	95	00	
4	0	03	00	
5	0	01	00	

3. MR Adjustment Radar'W

The inner focus lens MR adjustment is carried out automatically. In whichever case, the focus will be deviated during auto focusing/manual focusing.

Subject	Not required
Measurement Point	Adjusting remote commander
Measuring Instrument	
Adjustment Page	F
Adjustment Address	70 to 7 C
Specified value 1	40 to C0
Specified value 2	03 to 78
Specified value 3	88 to F8

Note 1: Perform the adjustment with the lens in horizontal state.
Note 2: Perform "Flange Back Adjustment" after this adjustment.
Note 3: Check that the data of page: 0 , address: 10 is " 00 ".
Note 4: Check that the data of page: 6 , address: 02 is " 00 ".
If not, turn the power of unit OFF/ON.

Switch setting

1) POWER ...CAMERA

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	6	01	BD	Press PAUSE button. (Note 5)
3	6	02		Check the data changes to "01".
4	F	$\begin{aligned} & 71 \\ & 72 \\ & 73 \\ & 74 \end{aligned}$		Check that the data of each address satisfied the specified value 1 .
5	F	$\begin{aligned} & 75 \\ & 77 \\ & 79 \\ & 7 B \\ & \hline \end{aligned}$		Check that the data of each address satisfied the specified value 2 .
6	F	$\begin{gathered} 76 \\ 78 \\ 7 \mathrm{~A} \\ 7 \mathrm{C} \end{gathered}$		Check that the data of each address satisfied the specified value 3 .

Note 5: The adjustment data will be automatically input to page: F, address: 70 to 7 C .

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	6	01	00	Press PAUSE button.
2	0	01	00	

4. Flange Back Adjustment RadarW
 (Using the minipattern box)

The inner focus lens flange back adjustment is carried out automatically. In whichever case, the focus will be deviated during auto focusing/manual focusing.

Subject	Siemens star chart with ND filter for minipattern box (Note 1)
Measurement Point	Adjusting remote commander
Measuring Instrument	
Adjustment Page	F
Adjustment Address	60 to 70
Specified value	Data of page: F, address: 6F is "00" to "0E"

Note 1: Dark Siemens star chart.
Note 2: Perform "HALL Adjustment" "MR Adjustment" before this adjustment.
Note 3: Perform the adjustment with the lens in horizontal state.
Note 4: Check that the data of page: 0 , address: 10 is " 00 ".
Note 5: Check that the data of page: 6 , address: 02 is " 00 ". If not, turn the power of unit OFF/ON.

Switch setting

1) POWER

CAMERA

Preparations before adjustments:

1) The minipattern box is installed as shown in the following figure.
Note 6: The attachment lenses are not used.
2) Install the minipattern box so that the distance between it and the front of lens of camcorder is less than 3 cm .
3) Make the height of minipattern box and the camera equal.
4) Check the output voltage of the regulated power supply is the specified voltage $\pm 0.01 \mathrm{Vdc}$.
5) Check that the center of Siemens star chart meets the center of shot image screen with the zoom lens at TELE end and WIDE end respectively.

Specified voltage: The specified voltage varies according to the minipattern box, so adjust the power supply output voltage to the specified voltage written on the sheet which is supplied with the minipattern box.

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	6	01	13	Press PAUSE button.
3	6	01	27	Press PAUSE button. (Note 7)
4	6	02		Check the data changes to " 01 ".
5	F	6 F		Check the data is " 00 " to "0E".

Note 7: The adjustment data will be automatically input to page: F, address: 60 to 70.

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	6	01	00	Press PAUSE button.
2	0	01	00	
3				Turn OFF the main power supply.
4			Perform "Flange Back Check".	

Fig. 6-1-10

5. Flange Back Adjustment (Using the flange back adjustment chart and Subject More than 500 m Away)

The inner focus lens flange back adjustment is carried out automatically. In whichever case, the focus will be deviated during auto focusing/manual focusing.

5-1. Flange Back Adjustment (1) RadarW

Subject	Flange back adjustment chart (2.0 m from the front of lens) (Luminance: 300 to 400 lux)
Measurement Point	Adjusting remote commander
Measuring Instrument	F
Adjustment Page	F
Adjustment Address	60 to 70
Specified value	Data of page: F, address: 6F is "00" to "0E"

Note 1: Perform "HALL Adjustment" and "MR Adjustment" before this adjustment.
Note 2: Perform the adjustment with the lens in horizontal state.
Note 3: Check that the data of page: 0 , address: 10 is " 00 ".
Note 4: Check that the data of page: 6 , address: 02 is " 00 ". If not, turn the power of unit OFF/ON.

Switch setting

1) POWER

CAMERA

Preparations before adjustments:

1) Check that the center of Flange back adjustment chart meets the center of shot image screen with the zoom lens at TELE end and WIDE end respectively.

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	6	01	13	Press PAUSE button.
3	6	01	15	Press PAUSE button. (Note 5)
4	6	02		Check the data changes to "01".
5	F	6 F		Check the data is "00" to " 0 E ".

Note 5: The adjustment data will be automatically input to page: F, address: 60 to 70 .

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	6	01	00	Press PAUSE button.
2	0	01	00	
3				Turn OFF the main power supply.
4				Perform "Flange Back Adjustment (2)".

5-2. Flange Back Adjustment (2) RadarW
Perform this adjustment after performing "Flange Back Adjustment (1)".

Subject	Subject more than 500 m away (Subject with clear contrast such as buildings, etc.)
Measurement Point	Adjusting remote commander
Measuring Instrument	F
Adjustment Page	F
Adjustment Address	60 to 70
Specified value	Data of page: F. address: 6F is "00" to "0E"

Note 1: Perform the adjustment with the lens in horizontal state.
Note 2: Check that the data of page: 0 , address: 10 is " 00 ".
Note 3: Check that the data of page: 6 , address: 02 is " 00 ". If not, turn the power of unit OFF/ON.

Switch setting

1) POWER

CAMERA

Preparations before adjustments:

1) Set the zoom lens to the TELE end and expose a subject that is more than 500 m away.
(Subjects with clear contrast such as building, etc.)
(Nearby subjects less than 500 m away should not be in the screen)

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	6	01	13	Press PAUSE button.
3				Place ND filter on the lens so that the optimum image is obtain.
4	6	01	29	Press PAUSE button. (Note 4)
5	6	02		Check the data changes to "01".
6	F	6 F		Check the data is "00" to "0E".

Note 4: The adjustment data will be automatically input to page: F, address: 60 to 70 .

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	6	01	00	Press PAUSE button.
2	0	01	00	
3				Turn OFF the main power supply.
4			Perform "Flange Back Check".	

6. Flange Back Check

Subject	Siemens star $(2.0 \mathrm{~m}$ from the front of the lens) (Luminance: 300 to 400 lux)
Measurement Point	Check operation on monitor TV
Measuring Instrument	Focused at the TELE end and WIDE end
Specified value	

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".

Switch setting

1) POWER

CAMERA
Note 2: When the auto focus is ON, the lens can be checked if it is focused or not by observing the data on the page: 1 of the adjusting remote commander.

-Odd: Focused

- Even: Unfocused

Preparations before adjustments:

1) Place the Siemens star 2.0 m from the front of the lens.

Checking method:

Order	Page	Address	Data	Procedure
1	6	40	01	
2	6	41	01	
3				Shoot the Siemens star with the zoom TELE end.
4				Turn on the auto focus.
5	0	03	0 F	
6	1			Check that the lens is focused. (Note 2)
7	6	21	10	
8				Shoot the Siemens star with the zoom WIDE end.
9				Observe the TV monitor and check that the lens is focused.

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	6	21	00	
2	6	40	00	
3	6	41	00	
4	0	03	00	

7. Picture Frame Setting

Subject	Color bar chart $($ Color reproduction adjustment frame $)$ $(1.0 \mathrm{~m}$ from the front of lens)
Measurement Point	Video terminal of A/V jack $(75 \Omega$ terminated $)$
Measuring Instrument	Oscilloscope and monitor TV
Specified Value	$\mathrm{A}=\mathrm{B}, \mathrm{C}=\mathrm{D}, \mathrm{E}=\mathrm{F}$

Switch setting

1) POWER

CAMERA
2) DIGITAL ZOOM (Menu setting)

OFF
3) STEADY SHOT (Menu setting) OFF
4) FOCUS

Setting method:

Order	Procedure
1	Adjust the zoom and the camera direction, and set the specified position.
2	Mark the position of the picture frame on the monitor TV, and adjust the picture frame to the this position in following adjustment using "Color reproduction adjustment frame".

Check on the oscilloscope

1. Horizontal period

Fig. 6-1-11
2. Vertical period

Fig. 6-1-12
Check on the monitor TV (Underscanned mode)

Fig. 6-1-13
8. AWB Standard Data Input RadarW

Adjust the white balance reference at 3200 K .

Subject	Clear chart (Color reproduction adjustment frame)
Adjustment Page	F
Adjustment Address	2A to 2D

Note 1: "AWB Standard Data Input" is available only once after the power is turned on. Turn the power off, then on again if the adjustment is retried.
Note 2: Check that the data of page: 0 , address: 10 is " 00 ".
Note 3: Check that the data of page: 6 , address: 02 is " 00 ". If not, turn the power of unit OFF/ON.

Switch setting

1) POWER

CAMERA
2) DIGITAL ZOOM (Menu setting) OFF
3) STEADY SHOT (Menu setting)

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	6	01	11	Press PAUSE button.
3	6	01	0 B	Press PAUSE button. (Note 4)
4	6	02		Check the data changes to "01".

Note 4: The adjustment data will be automatically input to page: F, address: 2A to 2D.

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	6	01	00	Press PAUSE button.
2	0	01	00	

9. MAX GAIN Adjustment RadarW

Setting the minimum illumination.
If it is not consistent, the image level required for taking subjects in low illuminance will not be produced (dark).

Subject	Clear chart (Color reproduction adjustment frame)
Adjustment Page	F
Adjustment Address	19

Note 1: Perform "AWB Standard Data Input" before this adjustment.
Note 2: Check that the data of page: 0 , address: 10 is " 00 ".
Note 3: Check that the data of page: 6 , address: 02 is " 00 ". If not, turn the power of unit OFF/ON.
Note 4: NTSC model: DCR-TRV940/TRV950
PAL model: DCR-TRV940E/TRV950E
Switch setting

1) POWER

CAMERA
2) DIGITAL ZOOM (Menu setting) OFF
3) STEADY SHOT (Menu setting) OFF

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	6	96		Set the following data 32: NTSC model 19: PAL model
3	6	97	00	
4	6	01	6 F	Press PAUSE button. (Note 5)
5	6	02		Check the data changes to "01".

Note 5: The adjustment data will be automatically input to page: F, address: 19.

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	6	96	00	
2	6	97	00	
3	6	01	00	Press PAUSE button.
4	0	01	00	

10. F No. \& ND Light Quality Standard Data Input RadarW
Correct the lens iris and the dispersion of the ND filter light quantity.

Subject	Clear chart (All white) (Zoom lens at WIDE end) (Note 2)
Adjustment Page	F
Adjustment Address	1C to 23

Note 1: Perform "Mechanical Shutter Adjustment" after this adjustment.
Note 2: With the ZOOM at WIDE end, set the distance where the clear chart is shot with all-white signal.
Note 3: Check that the data of page: 0 , address: 10 is " 00 ".
Note 4: Check that the data of page: 6 , address: 02 is " 00 ". If not, turn the power of unit OFF/ON.

Switch setting

1) POWER CAMERA
2) ZOOM \qquad WIDE end
3) DIGITAL ZOOM (Menu setting) OFF
4) STEADY SHOT (Menu setting) OFF

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	6	30	01	
3	6	01	BB	Press PAUSE button. (Note 5)
4	6	02		Check the data changes to "01".

Note 5: The adjustment data will be automatically input to page: F, address: 1C to 23 .

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	6	01	00	Press PAUSE button.
2	6	30	00	
3	0	01	00	

11. LV Standard Data Input RadarW

Adjust the normal coefficient of the light value.

Subject	Clear chart (Color reproduction adjustment frame)
Measurement Point	Displayed data of page: 1 (Note 4)
Measuring Instrument	Adjusting remote commander
Adjustment Page	F
Adjustment Address	1A, 1B
Specified Value	0FE0 to 1020

Note 1: Perform "AWB Standard Data Input" before this adjustment.
Note 2: Check that the data of page: 0 , address: 10 is " 00 ".
Note 3: Check that the data of page: 6 , address: 02 is " 00 ". If not, turn the power of unit OFF/ON.
Note 4: The right four digits of the page: 1 displayed data of the adjusting remote commander.

$$
1: \frac{\mathrm{XX}: \mathrm{XX}}{\square} \text { Displayed data }
$$

Switch setting

1) POWER

CAMERA
2) DIGITAL ZOOM (Menu setting)

OFF
3) STEADY SHOT (Menu setting) OFF

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	6	30	01	
3	6	01	0 D	Press PAUSE button. (Note 5)
4	6	02		Check the data changes to "01".
5	6	04	1 E	
6	1			Check that the displayed data (Note 4) satisfied the specified value. (Note 6)

Note 5: The adjustment data will be automatically input to page: F, address: 1A, 1B.
Note 6: Retry adjustment if the displayed data did not satisfy the specified value.

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	6	01	00	Press PAUSE button.
2	6	04	00	
3	6	30	00	
4	0	01	00	

12. Auto White Balance Adjustment RadarW

Adjust to the proper auto white balance output data.
If it is not correct, auto white balance and color reproducibility will be poor.

Subject	Clear chart (Color reproduction adjustment frame)
Filter	Filter C14 for color temperature correction
Adjustment Page	F
Adjustment Address	40 to 43

Note 1: "Auto White Balance Adjustment" is available only once after the power is turned on. Turn the power off, then on again if the adjustment is retried.
Note 2: Check that the data of page: 0 , address: 10 is " 00 ".
Note 3: Check that the data of page: 6 , address: 02 is " 00 ". If not, turn the power of unit OFF/ON.

Switch setting

1) POWER.

CAMERA
2) DIGITAL ZOOM (Menu setting) OFF
3) STEADY SHOT (Menu setting) OFF

Adjusting method:

Order	Page	Address	Data	Procedure
1				Place the C14 filter on the lens.
2	0	01	01	
3	6	01	83	Press PAUSE button.
4	6	01	81	Press PAUSE button. (Note 4)
5	6	02		Check the data changes to "01".

Note 4: The adjustment data will be automatically input to page: F, address: 40 to 43.

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	6	01	00	Press PAUSE button.
2	0	01	00	
3				Remove the C14 filter on the lens.

13. Auto White Balance Check RadarW

Subject	Clear chart (Color reproduction adjustment frame)	
Filter	Filter C14 for color temperature correction	
	ND filter 1.0, 0.4 and 0.1	
Measurement Point	Video terminal of A/V jack (75 Ω terminated)	Displayed data of page: 1 (Note 2)
Measuring Instrument	Vectorscope	Adjusting remote commander
Specified Value	Fig. 6-1-14 (A) and (B)	8000 to 8BC0

Note 1: Perform "Auto White Balance Adjustment" before this adjustment.
Note 2: The right four digits of the page: 1 displayed data of the adjusting remote commander.
$1: \underline{\mathrm{XX}: \mathrm{XX}}$

Displayed data

Note 3: Check that the data of page: 0 , address: 10 is " 00 ".

Switch setting

1) POWER ... CAMERA
2) DIGITAL ZOOM (Menu setting) OFF
3) STEADY SHOT (Menu setting) OFF

Checking method:

Order	Page	Address	Data	Procedure
1				Check that the lens is not covered with either filter.
INDOOR luminance point check				
2	6	01	0F	Press PAUSE button.
3				Check that the center of the white luminance point within the circle shown Fig. 6-1-14. (A)
4	6	01	00	Press PAUSE button.
OUTDOOR luminance point check				
5				Place the C14 filter on the lens.
6	6	01	3F	Press PAUSE button.
7				Check that the center of the white luminance point within the circle shown Fig. 6-1-14. (B)
8	6	01	00	Press PAUSE button.
Data check				
9				Remove the C14 filter, and place the ND filter 1.5 (1.0 + $0.4+0.1$) on the lens.
10	0	03	06	
11	1			Check that the displayed data (Note 2) satisfied the specified value.

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	6	01	00	Press PAUSE button.
2	0	03	00	
3				Remove the ND filter 1.5 $(1.0+0.4+0.1)$ on the lens.

Fig. 6-1-14 (A)

Fig. 6-1-14 (B)

14. Color Reproduction Adjustment

Adjust the color separation matrix coefficient so that proper color reproduction is produced.

Subject	Color bar chart (Color reproduction adjustment frame)
Measurement Point	Video terminal of A/V jack (75 Ω terminated)
Measuring Instrument	Vectorscope, Oscilloscope
Adjustment Page	F
Adjustment Address	38 to 3B
Specified Value	All color luminance points should settle within each color reproduction frame.

Note 1: NTSC model: DCR-TRV940/TRV950
PAL model: DCR-TRV940E/TRV950E
Note 2: "Color Reproduction Adjustment" is available only once after the power is turned on. Turn the power off, then on again if the adjustment is retried.
Note 3: Check that the data of page: 0 , address: 10 is " 00 ".
Note 4: Check that the data of page: 6 , address: 02 is " 00 ". If not, turn the power of unit OFF/ON.

Switch setting

1) POWER

CAMERA
2) DIGITAL ZOOM (Menu setting) OFF
3) STEADY SHOT (Menu setting) OFF

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	6	01	3D	Press PAUSE button.
3	6	9 D		
4	6	01	61	Change the data and set the white level (A) of color bar to the following value. (Fig. 6-1-15) NTSC: 90IRE (642.6 mVp-p) PAL: 630 mVp-p
5	6	02	Press PAUSE button. (Note 5)	
6		Check the data changes to "01".		
7		Adjust the GAIN and PHASE of the vectorscope, and set to the burst lumi- nance point to the burst position of color reproduc- tion frame.		
		Check the each color luminance point is in each color reproduction frame.		

Note 5: The adjustment data will be automatically input to page: F, address: 38 to 3B.

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	6	01	00	Press PAUSE button.
2	6	9 D	00	
3	0	01	00	

Fig. 6-1-15

NTSC model

PAL model

Fig. 6-1-16

15. PSD Sensor Gain Adjustment

Adjust the gain of the PSD sensor for the steady shot.

- Perform the angular velocity sensor sensitivity adjustment only when replacing the angular velocity sensor or lens block. When the microprocessor, circuit, etc. malfunctions, do not perform this adjustment but check operations only.
Note 1: Check that the data of page: 0 , address: 10 is " 00 ".
Note 2: NTSC model: DCR-TRV940/TRV950
PAL model: DCR-TRV940E/TRV950E
Switch setting

1) POWER

CAMERA
2) ZOOM \qquad TELE end
3) DIGITAL ZOOM (Menu setting) OFF
4) STEADY SHOT (Menu setting) ON

15-1. PSD Sensor Gain Adjustment (1)

Subject	Pattern A $(1.5 \mathrm{~m}$ from the front of lens)
Measurement Point	Video terminal of A/V jack
Measuring Instrument	Oscilloscope (V period)
Adjustment Page	F
Adjustment Address	84

Pattern A

A4 size (297 x 210 mm)
Fig. 6-1-17

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	F	84	80	Press PAUSE button.
3	6	01	8F	Press PAUSE button.
4				Shoot the pattern A at the TELE end.
5				Adjust the focus.
6				Measure the falling edge of waveform, SV1 (msec).
7	6	01	91	Press PAUSE button.
8				Measure the falling edge of waveform, SV2 (msec).
9				Calculate Dsv using following equations. (decimal calculation) (Note 1) NTSC: $\mathrm{D}_{\text {sv }}=2.751 \div(\mathrm{SV} 2-\mathrm{SV} 1)$ PAL: $\mathrm{D}_{\text {sv }}=3.298 \div(\mathrm{SV} 2-\mathrm{SV} 1)$

Order	Page	Address	Data	Procedure
10				Calculate $\mathrm{D}_{84}{ }^{\prime}$ using following equations. (decimal calculation)
11				$\mathrm{D}_{84}{ }^{\prime}=128 \times \mathrm{D}_{\text {sv }}$
Convert $\mathrm{D}_{84}{ }^{\prime}$ to a hexadeci- (Nal number, and obtain D_{84}. (Note 2)				
12	F	84	D_{84}	Press PAUSE button.

Note 1: Keep a note of Dsv value to use at "16. Angular Velocity Sensor Sensitivity Adjustment".
Note 2: Refer to table 6-4-1. "Hexadecimal-decimal conversion table"

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	6	01	00	Press PAUSE button.
2	0	01	00	
3				Check that the steady shot function operates normally.

Fig. 6-1-18

15-2. PSD Sensor Gain Adjustment (2)

Subject	Pattern B $(1.5 \mathrm{~m}$ from the front of lens)
Measurement Point	Video terminal of A/V jack
Measuring Instrument	Oscilloscope (H period)
Adjustment Page	F
Adjustment Address	85

Pattern B

Fig. 6-1-19

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	F	85	80	Press PAUSE button.
3	6	01	8F	Press PAUSE button.
4				Shoot the pattern B at the TELE end.
5				Adjust the focus.
6				Measure the falling edge of waveform, SH1 ($\mu \mathrm{sec}$).
7	6	01	91	Press PAUSE button.
8				Measure the falling edge of waveform, SH2 ($\mu \mathrm{sec}$).
9				Calculate Dsh $_{\text {using }}$ following equations. (decimal calculation) (Note 1) NTSC: $\mathrm{D}_{\mathrm{sH}}=7.821 \div(\mathrm{SH} 1-\mathrm{SH} 2)$ PAL: $\mathrm{D}_{\mathrm{sH}}=7.876 \div(\mathrm{SH} 1-\mathrm{SH} 2)$
10				Calculate D_{85} ' using following equations. (decimal calculation) $\mathrm{D}_{85}^{\prime}=128 \times \mathrm{D}_{\mathrm{sH}}$
11				Convert D_{85} ' to a hexadecimal number, and obtain D_{85}. (Note 2)
12	F	85	D85	Press PAUSE button.

Note 1: Keep a note of Dsh value to use at "16. Angular Velocity Sensor Sensitivity Adjustment".
Note 2: Refer to table 6-4-1. "Hexadecimal-decimal conversion table"

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	6	01	00	Press PAUSE button.
2	0	01	00	
3				Check that the steady shot function operates normally.

Falling edge of waveform when data is " 91 "

Fig. 6-1-20

16. Angular Velocity Sensor Sensitivity Adjustment

- Perform the angular velocity sensor sensitivity adjustment only when replacing the angular velocity sensor or lens block. When the microprocessor, circuit, etc. malfunctions, do not perform this adjustment but check operations only.
- Record the sensitivity label of the angular velocity sensor (repair part), including to which side of the board it was attached to, etc. If it has been attached incorrectly, the image will move up and down or to the left and right during steady shot operation. Be sure to take note of this.

Precautions on the Parts Replacement

There are two types of repair parts.

$$
\begin{array}{ll}
\text { Type A } & \text { ENC03MA } \\
\text { Type B } & \text { ENC03MB }
\end{array}
$$

Replace the broken sensor with a same type sensor. If replace with other type parts, the image will vibrate up and down or left and right during hand-shake correction operations. After replacing, readjust according to the adjusting method after replacement.

Precautions on Angular Velocity Sensor

The sensor incorporates a precision oscillator. Handle it with care as if it dropped, the balance of the oscillator will be disrupted and operations will not be performed properly.

Adjustment Page	F
Adjustment Address	86,87

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".
Note 2: The sensor sensitivity (SE4001, SE4002 of SE-132 board) is labeled only on the repair parts.

Switch setting

1) POWER \qquad CAMERA
2) ZOOM \qquad TELE end
3) DIGITAL ZOOM (Menu setting) OFF
4) STEADY SHOT (Menu setting) ON

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2				Read the sensor sensitivity of SE4001, and it is named S_{4001}.
3				Read the sensor sensitivity of SE4002, and it is named S_{4002}.
4				Calculate $\mathrm{D}_{86}{ }^{\prime}$, D_{87} ' using following equations. (decimal calculation) (Note 3) $\mathrm{D}_{86}{ }^{\prime}=\mathrm{D}_{\text {sv }} \times\left(0.60 \div \mathrm{S}_{4001}\right) \times 88$ $\mathrm{D}_{87}{ }^{\prime}=\mathrm{D}_{\text {sH }} \times\left(0.60 \div \mathrm{S}_{4002}\right) \times 88$
5				Convert $\mathrm{D}_{86}{ }^{\prime}, \mathrm{D}_{87}$ ' to a hexadecimal number, and obtain D86, D87. (Note 4)
6	F	86	D_{86}	Press PAUSE button.
7	F	87	D87	Press PAUSE button.

Note 3: The value that is calculated at "15. PSD Sensor Gain Adjustment" is used for $D_{s v}$ and $D_{s h}$.
Note 4: Refer to table 6-4-1. "Hexadecimal-decimal conversion table"

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	0	01	00	
2				Check that the steady shot function operates normally.

17. Mechanical Shutter Adjustment RadarW

Adjust the close time and loss time every F number of the mechanical shutter and the high-speed shutter correction value to correct the luminous exposure.

Subject	Clear chart (All white) (Zoom lens at WIDE end) (Note 2)
Measurement Point	Adjusting remote commander
Measuring Instrument	
Adjustment Page	F
Adjustment Address	90 to A5
Specified Value	Data of page: 6, address: A8 is "00"

Note 1: Perform "HALL Adjustment", "Flange Back Adjustment" and "F No. \& ND Light Quality Standard Data Input" before this adjustment.
Note 2: With the ZOOM at WIDE end, set the distance where the clear chart is shot with all-white signal.
Note 3: Check that the data of page: 0 , address: 10 is " 00 ".
Note 4: Check that the data of page: 6 , address: 02 is " 00 ". If not, turn the power of unit OFF/ON.

Switch setting

1) POWER

CAMERA
2) ZOOM WIDE end
3) DIGITAL ZOOM (Menu setting) OFF
4) STEADY SHOT (Menu setting) OFF

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	6	30	01	
3	6	9 C	01	
4	6	01	AD	Press PAUSE button. (Note 5)
5	6	02		Check the data changes to " 01 ".
6	6	A8		Check the data is " 00 ".

Note 5: The adjustment data will be automatically input to page: F, address: 90 to A5.

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	6	01	00	Press PAUSE button.
2	6	30	00	
3	6	9 C	00	
4	0	01	00	

18. Strobe Light Level Adjustment RadarW

Adjust the strobe light level.

Subject	Flash adjustment box (Note 3) $(50 \mathrm{~cm}$ from the front of the lens)
Measurement Point	Adjusting remote commander
Measuring Instrument	
Adjustment Page	F
Adjustment Address	8 A to 8F
Specified Value	Data of page: F, address: B8 is "00"

Note 1: Perform "Hall Adjustment", "Flange Back Adjustment" and"F No. \& ND Light Quality Standard Data Input" before this adjustment.
Note 2: Restrict external light to enter the Flash adjustment box as less as possible.
Note 3: Refer to "4. Preparing the Flash adjustment box".
Note 4: Check that the data of page: 0 , address: 10 is " 00 ".
Note 5: Check that the data of page: 6, address: 02 is " 00 ". If not, turn the power of unit OFF/ON.

Switch setting

1) POWER

CAMERA

2) DIGITAL ZOOM (Menu setting) OFF
3) STEADY SHOT (Menu setting) OFF
4) Flash ... OPEN
(Press the FLASH button to activate the Flash mode, and then press the PHOTO button.)

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	7	05	04	(Note 6)
3	6	30	02	
4	6	01	67	Press PAUSE button. (Note 7)
5			Check the flashing of strobe light	
6	6	02		Check the data changes to "01".
7	6	B8		Check the data is "00".

Note 6: Press the STOP button on the adjusting remote commander, and set the data.
Note 7: The adjustment data will be automatically input to page: F , address: 8 A to 8 F .

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	6	01	00	Press PAUSE button.
2	6	30	00	
3	7	05	00	
4	0	01	00	

19. Strobe White Balance Adjustment RadarW

Adjust the white balance when the strobe light flashed.

Subject	Flash adjustment box (Note 3) $(50 \mathrm{~cm}$ from the front of the lens)
Measurement Point	Video terminal of A/V jack $(75 \Omega$ terminated)
Measuring Instrument	Vectorscope
Adjustment Page	F
Adjustment Address	36,37
Specified Value	Fig. 6-1-21

Note 1: Perform "Hall Adjustment", "Flange Back Adjustment", "F No. \& ND Light Quality Standard Data Input", "AWB Adjustment" and "Strobe Light Level Adjustment" before this adjustment.
Note 2: Restrict external light to enter the Flash adjustment box as less as possible.
Note 3: Refer to "4. Preparing the Flash adjustment box".
Note 4: Check that the data of page: 0 , address: 10 is " 00 ".

Switch setting

1) POWER ..CAMERA
2) DIGITAL ZOOM (Menu setting) OFF
3) STEADY SHOT (Menu setting) OFF
4) Flash ... OPEN (Press the FLASH button to activate the Flash mode, and then press the PHOTO button.)

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	7	05	04	(Note 5)
3	E	00	00	Press PAUSE button.
4	E	01	06	Press PAUSE button.
5	6	B6	41	
6	6	B2	01	
7				Check that the LED of the FLASH button is lit.
8	6	B2	00	
9	6	30	02	
10	6	01	B9	Press PAUSE button. (Note 6)
11				Check the flashing of strobe light
12	6	02		Check the data changes to "01".
13	6	02	00	
14	6	01	E7	Press PAUSE button.
15				Check the flashing of strobe light
16	6	02		Check the data changes to "01".
17				Wait for 3 seconds.
18			Check that the center of the white luminance point within the circle shown Fig. 6-1-21.	

Note 5: Press the STOP button on the adjusting remote commander, and set the data.
Note 6: The adjustment data will be automatically input to page: F, address: 36, 37.

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	6	01	00	Press PAUSE button.
2	6	30	00	
3	6	B6	00	
4	7	05	00	
5	E	00	00	Press PAUSE button.
6	E	01	00	Press PAUSE button.
7	0	01	00	

Fig. 6-1-21

20. Hologram AF Output Adjustment RadarW

Adjust so that the laser output of the hologram AF becomes proper value.

Subject	Flash adjustment box (Note 3) (50 cm from the front of the lens)
Measurement Point	Adjusting remote commander
Measuring Instrument	
Adjustment Page	F
Adjustment Address	7 D to 83
Specified Value 1	10 to FF
Specified Value 2	34 to 4 C
Specified Value 3	00 to F0
Specified Value 4	0A to FF

Note 1: Perform "Hall Adjustment", "Flange Back Adjustment", "F No. \& ND Light Quality Standard Data Input" and "AWB Standard Data Input" before this adjustment.
Note 2: Restrict external light to enter the Flash adjustment box as less as possible.
Note 3: Refer to "4. Preparing the Flash adjustment box".
Note 4: Make adjustment with the lens hood removed.
Note 5: Check that the data of page: 0 , address: 10 is " 00 ".
Note 6: Check that the data of page: 6, address: 02 is " 00 ".
If not, turn the power of unit OFF/ON.

Switch setting

1) POWER CAMERA
2) DIGITAL ZOOM (Menu setting) OFF
3) STEADY SHOT (Menu setting)

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	6	30	02	
3	6	01	AF	Press PAUSE button. (Note 7)
4	6	02		Check the data changes to "01".
5	F	7 D		Check that the data satisfied the specified value 1.
6	F	82		Check that the data satisfied the specified value 2.
7	F	7 E		Check that the data satisfied the specified value 3.
8	F	7 F		Check that the data satisfied the specified value 4.

Note 7: The adjustment data will be automatically input to page: F, address: 7D to 83 .
At this time, check that the laser holograms are all displayed on the monitor TV screen.

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	6	01	00	Press PAUSE button.
2	6	30	00	
3	0	01	00	

21. Hologram AF Angle Check RadarW

Subject	Dark homogeneous subject (Note 2) (1 m from the front of the lens)
Measurement Point	Monitor TV
Measuring Instrument	A total of two or more lines in laser hologram length must be seen in the specified frame.
Specified Value	The laser hologram lines must be seen in four directions outside the specified frame.

Note 1: Perform "AWB Standard Data Input" before this adjustment.
Note 2: To observe the laser hologram, use a black box or darken the ambience.

Switch setting

1) POWER .. MEMORY
2) DIGITAL ZOOM (Menu setting) OFF
3) STEADY SHOT (Menu setting) OFF
4) FOCUS

Checking method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	0	10	01	
3	E	47	0 A	Press PAUSE button.
4	0	10	00	
5	6	23	04	
6	6	5 B	B6	
7	6	5 C	A5	
8	6	90	A9	
9	6	91	02	
10	6	92	67	
11	6	93	46	
12	6	01	79	Press PAUSE button.
13	6	01	78	Press PAUSE button.
				Check on the monitor TV screen that the laser holo- gram satisfies the specified value (Fig. 6-1-22). (Note 3)
14				

Note 3: When the specified value is not satisfied, angle of the laser hologram can be adjusted by turning the screw as shown in the Fig. 6-1-23. (in horizontal direction only)

Processing after Completing Adjustment:

Order	Page	Address	Data	Procedure
1	0	10	01	
2	E	47	00	Press PAUSE button.
3	0	10	00	
4	6	01	00	Press PAUSE button.
5	6	23	00	
6	6	5 B	00	
7	6	5 C	00	
8	6	90	00	
9	6	91	00	
10	6	92	00	
11	6	93	00	
12	0	01	00	

Fig. 6-1-22

Fig. 6-1-23

1-4. COLOR ELECTRONIC VIEWFINDER SYSTEM ADJUSTMENTS

Before perform the viewfinder system adjustments, check the data of page: 0 , address: 10 is " 00 ".
If not, select page: 0 , address: 10 , and set the data " 00 ".
Note 1: Taken an extreme care not to destroy the liquid crystal display module by static electricity when replacing it.
Note 2: Set the VF B. L. (Menu setting) to the BRT NORMAL.
Note 3: Perform the following data setting before the viewfinder system adjustments.

1) Select page: 3 , address: $C 4$, and set data: 67 .
2) Select page: 3, address: C5, and set data: 01 . Reset the data after completing adjustment.
3) Select page: 3 , address: C 4 , and set data: 00 .
4) Select page: 3, address: C 5 , and set data: 00 .

[Adjusting connector]

Most of the measuring points for adjusting the viewfinder system are concentrated in CN1008 of the VC-288 board.
Connect the Measuring Instruments via the CPC-8 jig (J-6082-388-A).
The following table shown the Pin No. and signal name of CN1008.

Pin No.	Signal Name	Pin No.	Signal Name
1	N.C.	2	D_2.8V
3	EVF_LED_DA	4	EVF_VG
5	EVF_VCO	6	GND
7	MD2	8	XCS_MC_FLASH
9	XINIT	10	XCS_ST_IMAGE_IC
11	DRUM_ON	12	FRRV
13	REC_CRRT1	14	REC_CRRT0
15	REG_GND	16	HI_XRESET
17	SWP	18	RF_IN
19	GND	20	RF_MON

1. VCO Adjustment (DB-014 board)

Set the VCO free-run frequency. If deviated, the EVF screen will be blurred.

Mode	CAMERA
Subject	Not required
Measurement Point	Pin (5 of CN1008 (EVF_VCO) on VC-288 board
Measuring Instrument	Frequency counter
Adjustment Page	C
Adjustment Address	51,52
Specified Value	$\mathrm{f}=15734 \pm 30 \mathrm{~Hz}$ (NTSC) $\mathrm{f}=15625 \pm 30 \mathrm{~Hz}$ (PAL)

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".
Note 2: NTSC model: DCR-TRV940/TRV950
PAL model: DCR-TRV940E/TRV950E
Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	C	51		Change the data and set the frequency (f) to the specified value.
3	C	51		Press PAUSE button.
4	C	51		Read the data and this data is named D_{51}.
5				Convert D_{51} to decimal notation, and obtain D_{51}. (Note 3)
6				Calculate D_{52} ' using following equations. (decimal calculation) $\mathrm{D}_{52}{ }^{\prime}=\mathrm{D}_{51}{ }^{\prime}+24$ (NTSC model) $\mathrm{D}_{52}{ }^{\prime}=\mathrm{D}_{51}{ }^{\prime}-24$ (PAL model)
7				Convert D_{52} ' to a hexadecimal number, and obtain D_{52}. (Note 3, 4)
8	C	52	D_{52}	Press PAUSE button.
9	0	01	00	

Note 3: Refer to table 6-4-1. "Hexadecimal-decimal conversion table"
Note 4: If $\mathrm{D}_{52}{ }^{\prime}>255$, then $\mathrm{D}_{52}=\mathrm{FF}$ (NTSC model) If $\mathrm{D}_{52}{ }^{\prime}<0$, then $\mathrm{D}_{52}=00$ (PAL model)

Fig. 6-1-24

2. RGB AMP Adjustment (DB-014 board)

Set the D Range of the RGB decoder for driving the LCD to the specified value.
If deviated, the EVF screen image will be blackish or saturated (whitish).

Mode	CAMERA
Subject	Not required
Measurement Point	Pin (4) of CN1008 (EVF_VG) on VC-288 board
Measuring Instrument	Oscilloscope
Adjustment Page	C
Adjustment Address	54
Specified Value	A $=7.00 \pm 0.05$ Vp-p

Note: Check that the data of page: 0 , address: 10 is " 00 ".

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	C	54		Change the data and set the voltage (A) to the specified value.
3	C	54		Press PAUSE button.
4	0	01	00	

A: Between the reversed waveform pedestal and non-reversed waveform pedestal

Fig. 6-1-25

3. Contrast Adjustment (DB-014 board)

Set the video signal level for driving the LCD to the specified value.
If deviated, the EVF screen image will be blackish or saturated (whitish).

Mode	CAMERA
Subject	Not required
Measurement Point	Pin (4) of CN1008 (EVF_VG) on VC-288 board
Measuring Instrument	Oscilloscope
Adjustment Page	C
Adjustment Address	58
Specified Value	$\mathrm{A}=2.40 \pm 0.05 \mathrm{Vp-p}$

Note: Check that the data of page: 0 , address: 10 is " 00 ".
Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	C	58		Change the data and set the voltage (A) to the specified value. (The data should be " 00 " to "7F")
3	C	58		Press PAUSE button.
4	0	01	00	

A: Between the pedestal and 3 steps peak
Fig. 6-1-26

4. Back Light Adjustment (DB-014 board)

Set the back light luminance.
If deviated, the image may become dark or bright.

Mode	CAMERA
Subject	Not required
Measurement Point	Pin (3) of CN1008 (EVF_LED_DA) on VC-288 board
Measuring Instrument	Digital voltmeter
Adjustment Page	C
Adjustment Address	4F, 50
Specified Value	BRIGHT mode: A $=2.10 \pm 0.05 ~ V d c ~$ NORMAL mode: B $=1.12 \pm 0.05 \mathrm{Vdc}$

Note: Check that the data of page: 0 , address: 10 is " 00 ".
Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	3	0 C	20	Press PAUSE button.
3	3	22	11	Press PAUSE button.
4	C	50		Change the data and set the DC voltage (A) to the specified value of BRIGHT mode.
5	C	50		Press PAUSE button.
6	C	4 F		Change the data and set the DC voltage (B) to the specified value of NORMAL mode.
7	C	4 F		Press PAUSE button.
8	3	0 C	00	Press PAUSE button.
9	3	22	00	Press PAUSE button.
10	0	01	00	

5. White Balance Adjustment (DB-014 board)

Correct the white balance.
If deviated, the EVF screen color cannot be reproduced.

Mode	CAMERA
Subject	Not required
Measurement Point	Check on EVF screen
Measuring Instrument	
Adjustment Page	C
Adjustment Address	56,57
Specified Value	EVF screen must not be colored

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".
Note 2: Check the white balance only when replacing the following parts. If necessary, adjust them.

1. LCD panel
2. Light induction plate
3. IC4201

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	C	56	80	Press PAUSE button.
3	C	57	80	Press PAUSE button.
4				Check that the EVF screen is not colored. If not colored, proceed to step 6.
5	C	56		Change the data so that the EVF screen is not colored. (Note 3)
6	0	01	00	

Note 3: To write in the non-volatile memory (EEPROM), press the PAUSE button each time to set the data.

1-5. LCD SYSTEM ADJUSTMENTS

Before perform the LCD system adjustments, check that the data of page: 0 , address: 10 is " 00 ".
If not, select page: 0 , address: 10 , and set the data " 00 ".
Note 1: The back light (fluorescent tube) is driven with high voltage AC power. Therefore, do not touch the back light directly, otherwise you will feel an electric shock.
Note 2: Taken an extreme care not to destroy the liquid crystal display module by static electricity when replacing it.
Note 3: Set the LCD B. L. (Menu setting) to the BRT NORMAL. Set the LCD COLOR (Menu setting) to the center.

[Adjusting connector]

Most of the measuring points for adjusting the LCD system are concentrated in CN1024 of the VC-288 board.
Connect the Measuring Instruments via the CPC-jig for LCD (J-6082-529-A).
The following table shown the Pin No. and signal name of CN1024.

Pin No.	Signal Name
1	PANEL_VG
2	PANEL_COM
3	GND
4	XHD_OUT
5	N.C.
6	N.C.

Fig. 6-1-27

1. VCO Adjustment (PD-168 board)

Set the VCO free-run frequency. If deviated, the LCD screen will be blurred.

Mode	CAMERA
Subject	Not required
Measurement Point	Pin (4) of CN1024 (XHD_OUT) on VC-288 board
Measuring Instrument	Frequency counter
Adjustment Page	C
Adjustment Address	61,62
Specified Value	$\mathrm{f}=15734 \pm 30 \mathrm{~Hz}$ (NTSC) $\mathrm{f}=15625 \pm 30 \mathrm{~Hz}$ (PAL)

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".
Note 2: NTSC model: DCR-TRV940/TRV950
PAL model: DCR-TRV940E/TRV950E
Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	C	61		Change the data and set the frequency (f) to the specified value.
3	C	61		Press PAUSE button.
4	C	61		Read the data and this data is named D61.
5	C	62	D 61	Press PAUSE button.
6	0	01	00	

2. RGB AMP Adjustment (PD-168 board)

Set the D Range of the RGB decoder for driving the LCD to the specified value.
If deviated, the LCD screen image will be blackish or saturated (whitish).

Mode	CAMERA
Subject	Not required
Measurement Point	Pin (1) of CN1024 (PANEL_VG) on VC-288 board External trigger: Pin (2) of CN1024 (PANEL_COM) on VC-288 board
Measuring Instrument	Oscilloscope
Adjustment Page	C
Adjustment Address	64
Specified Value	A $=3.50 \pm 0.05 \mathrm{Vp-p}$

Note: Check that the data of page: 0 , address: 10 is " 00 ".

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	C	64		Change the data and set the voltage (A) to the specified value. (The data should be "00" to "3F")
3	C	64		Press PAUSE button.
4	0	01	00	

A: Between the reversed waveform pedestal and non-reversed waveform pedestal

3. Contrast Adjustment (PD-168 board)

Set the video signal level for driving the LCD to the specified value.
If deviated, the LCD screen image will be blackish or saturated (whitish).

Mode	CAMERA
Subject	Not required
Measurement Point	Pin ©1 of CN1024 (PANEL_VG) on VC-288 board External trigger: Pin (2) of CN1024 (PANEL_COM) on VC-288 board
Measuring Instrument	Oscilloscope
Adjustment Page	C
Adjustment Address	69
Specified Value	A $=3.45 \pm 0.05$ Vp-p

Note: Check that the data of page: 0 , address: 10 is " 00 ".

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	C	69		Change the data and set the voltage (A) to the specified value. (The data should be "00" to "7F")
3	C	69		Press PAUSE button.
4	0	01	00	

A: Between the pedestal (0 IRE) and 100 IRE
Fig. 6-1-29

Fig. 6-1-28

4. V-COM Level Adjustment (PD-168 board)

Set the common electrode drive signal level of LCD to the specified value.

Mode	CAMERA
Subject	Not required
Measurement Point	Pin (2) of CN1024 (PANEL_COM) on VC-288 board
Measuring Instrument	Oscilloscope
Adjustment Page	C
Adjustment Address	66
Specified Value	A $=5.40 \pm 0.05$ Vp-p

Note 1: Perform "RGB AMP Adjustment" and "Contrast Adjustment" before this adjustment.
Note 2: Check that the data of page: 0, address: 10 is " 00 ".

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	C	66		Change the data and set the voltage (A) to the specified value.
3	C	66		Press PAUSE button.
4	0	01	00	

A: PANEL COM signal level
Fig. 6-1-30

5. V-COM Adjustment (PD-168 board)

Set the DC bias of the common electrode drive signal of LCD to the specified value.
If deviated, the LCD display will be move, producing flicker and conspicuous vertical lines.

Mode	CAMERA
Subject	Not required
Measurement Point	Check on LCD screen
Measuring Instrument	C
Adjustment Page	C
Adjustment Address	63
Specified Value	The brightness difference between the section-A and section-B is minimum

Note 1: Perform "RGB AMP Adjustment", "Contrast Adjustment" and "V-COM Level Adjustment" before this adjustment.
Note 2: Check that the data of page: 0 , address: 10 is " 00 ".
Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	C	63		Change the data so that brightness of the section A and section B is equal.
3	C	63		Subtract 8 from the data.
4	C	63		Press PAUSE button.
5	0	01	00	

Fig. 6-1-31
6. White Balance Adjustment (PD-168 board)

Correct the white balance.
If deviated, the LCD screen color cannot be reproduced.

Mode	CAMERA
Subject	Not required
Measurement Point	Check on LCD screen
Measuring Instrument	
Adjustment Page	C
Adjustment Address	67,68
Specified Value	LCD screen must not be colored

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".
Note 2: Check the white balance only when replacing the following parts. If necessary, adjust them.

1. LCD panel
2. Light induction plate
3. IC5701

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	C	67	7 F	Press PAUSE button.
3	C	68	87	Press PAUSE button.
4				Check that the LCD screen is not colored. If not colored, proceed to step 6.
5	C	67		Change the data so that the LCD screen is not colored. (Note 3)
6	0	01	00	

Note 3: To write in the non-volatile memory (EEPROM), press the PAUSE button each time to set the data.

6-2. MECHANISM SECTION ADJUSTMENTS

On the mechanism section adjustment

For details of mechanism section adjustments, checks, and replacement of mechanism parts, refer to the separate volume "DV MECHANICAL ADJUSTMENT MANUAL VI J Mechanism ".

2-1. HOW TO ENTER RECORD MODE WITHOUT CASSETTE

1) Connect the adjustment remote commander to the LANC jack.
2) Turn the HOLD switch of the adjustment remote commander to the ON position.
3) Close the cassette compartment without the cassette.
4) Select page: 3 , address: 01 , set data: 0C, and press the PAUSE button of the adjustment remote commander.
(The mechanism enters the record mode automatically.)
Note: The function buttons become inoperable.
5) To quit the record mode, select page: 3 , address: 01 , set data: 00 , and press the PAUSE button of the adjustment remote commander. (Whenever you want to quit the record mode, be sure to quit following this procedure.)

2-2. HOWTO ENTER PLAYBACK MODE WITHOUT CASSETTE

1) Connect the adjustment remote commander to the LANC jack.
2) Turn the HOLD switch of the adjustment remote commander to the ON position.
3) Close the cassette compartment without the cassette.
4) Select page: 3, address: 01, set data: 0B, and press the PAUSE button of the adjustment remote commander. (The mechanism enters the playback mode automatically.) Note: The function buttons become inoperable.
5) To quit the playback mode, select page: 3 , address: 01 , set data: 00 , and press the PAUSE button of the adjustment remote commander. (Whenever you want to quit the playback mode, be sure to quit following this procedure.)

2-3. TAPE PATH ADJUSTMENT

1. Preparation for Adjustment
1) Clean the tape running side (tape guide, drum, capstan shaft, pinch roller, etc.).
2) Connect the adjustment remote commander to the LANC jack.
3) Turn the HOLD switch of the adjustment remote commander to the ON position.
4) Connect an oscilloscope to VC-288 board CN1008 via the CPC-8 jig (J-6082-388-A).

Channel 1: VC-288 board, CN1008 Pin (20) (Note) External trigger: VC-288 board, CN1008 Pin (17)
Note: Connect a 75Ω resistor between pins (20) of CN1008 and (19) (GND).
75Ω resistor (Parts code: 1-247-804-11)
5) Playback the alignment tape for tracking. (XH2-1)
6) Select page: 3 , address: 33 , and set data: 08 .
7) Select page: 3 , address: 26 , and set data: 31 .
8) Check that the oscilloscope RF waveform is normal at the entrance and exit.
If not normal, adjust according to the separate volume "DV MECHANICAL ADJUSTMENT MANUAL VI J Mechanism",

CN1008 of VC-288 board

Pin No.	Signal Name	Pin No.	Signal Name
1	N.C.	2	D_2.8V
3	EVF_LED_DA	4	EVF_VG
5	EVF_VCO	6	GND
7	MD2	8	XCS_MC_FLASH
9	XINIT	10	XCS_ST_IMAGE_IC
11	DRUM_ON	12	FRRV
13	REC_CRRT1	14	REC_CRRT0
15	REG_GND	16	HI_XRESET
17	SWP	18	RF_IN
19	GND	20	RF_MON

2. Procedure after operations

1) Connect the adjustment remote commander to the LANC jack and set the HOLD switch to the ON position.
2) Select page: 3 , address: 26 , and set data: 00 .
3) Select page: 3 , address: 33 , and set data: 00 .

Fig. 6-2-1

6-3. VIDEO SECTION ADJUSTMENTS

NTSC model : DCR-TRV940/TRV950
PAL model : DCR-TRV940E/TRV950E

3-1. PREPARATIONS BEFORE ADJUSTMENTS (VIDEO SECTION)

Use the following measuring instruments for video section adjustments.

3-1-1. Equipment Required

1) TV monitor
2) Oscilloscope (dual-phenomenon, band above 30 MHz with delay mode) (Unless specified otherwise, use a $10: 1$ probe.)
3) Frequency counter
4) Pattern generator with video output terminal.
5) Digital voltmeter
6) Audio generator
7) Audio level meter
8) Audio distortion meter
9) Audio attenuator
10) Regulated power supply
11) Alignment tapes

- Tracking standard (XH2-1)

Parts code: 8-967-997-01

- SW/OL standard (XH2-3)

Parts code: 8-967-997-11

- Audio operation check for NTSC (XH5-3) Parts code: 8-967-997-51
- System operation check for NTSC (XH5-5) Parts code: 8-967-997-61
- Audio operation check for PAL (XH5-3P) Parts code: 8-967-997-55
- System operation check for PAL (XH5-5P) Parts code: 8-967-997-66

12) Adjustment remote commander (J-6082-053-B)
13) $\mathrm{CPC}-8 \mathrm{jig}(\mathrm{J}-6082-388-\mathrm{A})$

3-1-2. Precautions on Adjusting

1) This set is adjusted in two modes, VTR mode and CAMERA mode.
To activate the VTR mode, set the POWER switch to the "VIDEO" position, or select the "Forced VTR Power ON Mode" with the adjusting remote commander. (Note 1) To activate the CAMERA mode, set the POWER switch to the "CAMERA" position, or select the "Forced CAMERA Power ON Mode" with the adjusting remote commander. (Note 2) After the adjustment finished, be sure to cancel the "Forced VTR Power ON Mode" or "Forced CAMERA Power ON Mode". (Note 4)
2) The VTR can be operated even if the cabinet (R) (operation switch (CK-116 board), LCD block) is removed. However, the lithium 3 V power is removed if the cabinet (R) is removed (CN5203 on the CK-116 board is disconnected), causing the data such as date and time, user set menu, etc. to be cleared. These data must be re-set after the adjustment finished. The diagnostic data and log data (drum running hours, user first power ON date, last dew date) are saved even if the lithium 3 V power is removed. When the cabinet (R) is removed, disconnect the following connector:
1. CK-116 board CN5203 (60P, 0.5 mm)
3) The VTR can be operated even if the front panel block (MA410 board, focus ring, micro unit) is removed. When the front panel block is removed, disconnect the following connectors:
1. MA-410 board CN5906 (33P, 0.5 mm)
2. MA-410 board CN5904 (8P, 0.5 mm)
4) The BT-003 board (DCR-TRV950/TRV950E only) and the flash unit need not be connected. If removed, disconnect the following connectors:
1. BT-003 board CN101 (15P, 0.3 mm) (DCR-TRV950/ TRV950E only)
2. BT-003 board CN102 (Bluetooth antenna terminal) (DCR-TRV950/TRV950E only)
3. DB-014 board CN1010 (23P, 0.3 mm)
5) The view finder block (LB-080 board) and the intelligent accessory shoe need not be connected. If removed, disconnect the following connectors:
1. DB-014 board CN7211 (21P, 0.3 mm)
2. DB-014 board CN7205 (27P, 0.3 mm)
6) The lens block (CD-389 board) need not be connected. If removed, disconnect the following connectors:
1. VC-288 board CN1201 (60P, 0.5 mm)
2. DB-014 board CN1501 (10P, 0.5 mm)
3. DB-014 board CN1004 (39P, 0.3mm)
7) With the "forced power ON mode" activated, the VTR can be operated even if the operation switch block (PS-1870) is removed. If removed, disconnect the following connector:
1. DB-014 board CN7201 (6P, 0.5 mm)

Note 1: Setting the "Forced VTR Power ON" mode (VTR mode)

1) Select page: 0 , address: 01 , and set data: 01 .
2) Select page: D, address: 10, set data: 02, and press the PAUSE button of the adjustment remote commander.
The above procedure will enable the VTR power to be turned on with the power switch (PS-1870 block) removed.
After completing adjustments, be sure to exit the "Forced VTR Power ON mode".

Note 2: Setting the "Forced Camera Power ON" mode (Camera mode)

1) Select page: 0, address: 01, and set data: 01 .
2) Select page: D, address: 10 , set data: 01 , and press the PAUSE button of the adjustment remote commander.
The above procedure will enable the camera power to be turned on with the power switch (PS-1870 block) removed.
After completing adjustments, be sure to exit the "Forced Camera Power ON mode".

Note 3: Setting the "Forced Memory Power ON" mode (Memory mode)

1) Select page: 0 , address: 01 , and set data: 01 .
2) Select page: D, address: 10, set data: 05, and press the PAUSE button of the adjustment remote commander.
The above procedure will enable the memory power to be turned on with the power switch (PS-1870 block) removed.
After completing adjustments, be sure to exit the "Forced Memory Power ON mode".

Note 4: Exiting the "Forced Power ON" mode

1) Select page: 0, address: 01, and set data: 01 .
2) Select page: D, address: 10 , set data: 00, and press the PAUSE button of the adjustment remote commander.
3) Select page: 0, address: 01, and set data: 00 .

DCR-TRV940/TRV940E/TRV950/TRV950E

3-1-3. Adjusting Connectors

Some of the adjusting points of the video section are concentrated at VC-288 board CN1008. Connect the measuring instruments via the CPC-8 jig (J-6082-388-A). The following table lists the pin numbers and signal names of CN1008.

Pin No.	Signal Name	Pin No.	Signal Name
1	N.C.	2	D_2.8V
3	EVF_LED_DA	4	EVF_VG
5	EVF_VCO	6	GND
7	MD2	8	XCS_MC_FLASH
9	XINIT	10	XCS_ST_IMAGE_IC
11	DRUM_ON	12	FRRV
13	REC_CRRT1	14	REC_CRRT0
15	REG_GND	16	HI_XRESET
17	SWP	18	RF_IN
19	GND	20	RF_MON

Table 6-3-1

Fig. 6-3-1

3-1-4. Connecting the Equipment

Connect the measuring instruments as shown in Fig. 6-3-2, and perform the adjustments.

Fig. 6-3-2

3-1-5. Alignment Tapes

Use the alignment tapes shown in the following table.
Use tapes specified in the signal column of each adjustment.

Name	Use
Tracking standard (XH2-1)	Tape path adjustment
SW/OL standard (XH2-3)	Switching position adjust- ment
Audio operation check (XH5-3 (NTSC), XH5-3P (PAL))	Audio system adjustment
System operation check (XH5-5 (NTSC), XH5-5P (PAL))	Operation check

Fig. 6-3-3 shows the 75% color bar signals recorded on the alignment tape for Audio Operation Check.

Note: Measure with video terminal (Terminated at 75Ω)

Fig. 6-3-3. Color bar signal of alignment tapes

3-1-6. Input/Output Level and Impedance

S video input/output

4-pin mini DIN
Luminance signal: $1 \mathrm{Vp}-\mathrm{p}$,
75Ω (ohms), unbalanced, sync negative
Chrominance signal:
DCR-TRV940 / TRV950: 0.286 Vp-p
DCR-TRV940E/TRV950E: 0.3 Vp-p
75Ω (ohms), unbalanced

A/V (Audio/Video) input/output AV MINI JACK, input/output auto switch
Video signal: $1 \mathrm{Vp}-\mathrm{p}, 75 \Omega$ (ohms), unbalanced, sync negative Audio signal: 327 mV , (at output impedance more than $47 \mathrm{k} \Omega$ (kilohms))

Input impedance with more than $47 \mathrm{k} \Omega$ (kilohms)
Output impedance with less than $2.2 \mathrm{k} \Omega$ (kilohms)

3-2. SYSTEM CONTROL SYSTEM ADJUSTMENTS

1. Initialization of $8, A, B, C, D, E, F, 1 B, 1 E, 1 F$

Page Data

If the $8, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, 1 \mathrm{~B}, 1 \mathrm{E}, 1 \mathrm{~F}$ page data is erased due to some reason, perform " $1-2$. INITIALIZATION OF $8, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}$, E, F, 1B, 1E, 1F PAGE DATA" of "CAMERA SYSTEM ADJUSTMENTS".
Check that the data of page: 0 , address: 10 is " 00 ".
If not, select page: 0 , address: 10 , and set the data " 00 ".

2. Touch Panel Adjustment

Adjust the calibration of touch panel.

Mode	VTR stop
Signal	Arbitrary
Adjustment Page	A
Adjustment Address	90 to 93

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".
Note 2: Adjustment must be performed while observing the LCD screen from the front.

Adjusting method:

1) Select page: 7 , address: 05 , and set data: 01 .
2) Using a ball-point pen etc., push the center of " X " indicated in the part A .
3) Using a ball-point pen etc., push the center of " \times " indicated in the part B.
4) Using a ball-point pen etc., push the center of " \times " indicated in the part C.
5) Select page: 7 , address: 05 , and set data: 00 .

Fig. 6-3-4

3. Node Unique ID No. Input

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".
Note 2: Perform "3-2. Input of Serial No." if the data on page 8 has been cleared and the node unique ID No. is not found.

3-1. Input of Company ID

Write the company ID to the EEPROM (nonvolatile memory).

Page	8
Address	$8 \mathrm{C}, 8 \mathrm{D}, 8 \mathrm{E}, 8 \mathrm{~F}, 90$

Input method:

1) Select page: 0, address: 01, and set data: 01 .
2) Select page: 8 , and enter the following data.

Note 2: Each time the data is set, press the PAUSE button on the adjusting remote commander.

Address	Data
8 C	08
8 D	00
8 E	46
8 F	01
90	02

[^0]
3-2. Input of Serial No.

Write the serial No. and model code to the EEPROM (nonvolatile memory).
In writing the serial No., a decimal number should be converted into a hexadecimal number.

Page	8
Address	$91,92,93$

1) Select page: 0 , address: 01 , and set data: 01 .
2) Read the serial No. from the model name label, and it is assumed to be D_{1}.
Example: If serial No. is "77881",

$$
\mathrm{D}_{1}=77881
$$

3) From Table 6-3-2, obtain D_{2} and H_{1} that correspond to D_{1}. Example: If $\mathrm{D}_{1}=77881$,

$$
\begin{aligned}
& \mathrm{D}_{2}=\mathrm{D}_{1}-65536=12345 \\
& \mathrm{H}_{1}=F E
\end{aligned}
$$

D_{1} (decimal)	D_{2} (decimal)	H_{1} (hexadecimal) (Service model code)
00001 to 65535	D_{1}	FE
65536 to 131071	$D_{1}-65536$	FE
131072 to 196607	$D_{1}-131072$	FE

Table 6-3-2
4) Enter H_{1} to address: 91 on page: 8 .

Example: If $\mathrm{H}_{1}=\mathrm{FE}$,
select page: 8 , address: 91 , and set data: FE, then press the PAUSE button.
5) From Table 6-3-3, obtain the maximum decimal number less than D_{2}, and it is assumed to be D_{3}.
Example: If $\mathrm{D}_{2}=12345$.

$$
\mathrm{D}_{3}=12288
$$

6) From Table 6-3-3, obtain a hexadecimal number that corresponds to D_{3}, and it is assumed to be H_{3}.
Example: If $\mathrm{D}_{3}=12288$,

$$
\mathrm{H}_{3}=3000
$$

7) Caluculate D_{4} using following equations (decimal caluculation). $\left(0 \leqq \mathrm{D}_{4} \leqq 225\right)$

$$
\mathrm{D}_{4}=\mathrm{D}_{2}-\mathrm{D}_{3}
$$

Example: If $\mathrm{D}_{2}=12345$ and $\mathrm{D}_{3}=12288$,

$$
D_{4}=12345-12288=57
$$

8) Convert D_{4} into a hexadecimal number to obtain H_{4}. (See Table 6-4-1 "Hexadecimal - decimal conversion table" in 6-4. Service Mode)
Example: If $\mathrm{D}_{4}=57$,

$$
\mathrm{H}_{4}=39
$$

9) Enter higher two digits of H_{3} to address: 92 on page: 8 .

Example: If $\mathrm{H}_{3}=3000$,
select page: 8 , address: 92 , and set data: 30 , then press the PAUSE button.
10) Enter H_{4} to address: 93 on page: 8.

Example: If $\mathrm{H}_{4}=39$,
select page: 8 , address: 93 , and set data: 39 , then press the PAUSE button.
11) Select page: 0 , address: 01 , and set data: 00 .

D3	H_{3}														
0	0000	8192	2000	16384	4000	24576	6000	32768	8000	40960	A000	49152	C000	57344	E000
256	0100	8448	2100	16640	4100	24832	6100	33024	8100	41216	A100	49408	C100	57600	E100
512	0200	8704	2200	16896	4200	25088	6200	33280	8200	41472	A200	49664	C200	57856	E200
768	0300	8960	2300	17152	4300	25344	6300	33536	8300	41728	A300	49920	C300	58112	E300
1024	0400	9216	2400	17408	4400	25600	6400	33792	8400	41984	A400	50176	C400	58368	E400
1280	0500	9472	2500	17664	4500	25856	6500	34048	8500	42240	A500	50432	C500	58624	E500
1536	0600	97	2600	17920	4600	261	6600	34304	8600	42496	A600	50688	C600	58880	E600
1792	0700	9984	2700	18176	4700	26368	6700	34560	8700	42752	A700	50944	C700	59136	E700
2048	0800	10240	2800	18432	4800	26624	6800	34816	8800	43008	A800	51200	C800	59392	E800
2304	0900	10496	2900	18688	4900	2688	6900	35072	8900	43264	A900	51456	C900	59648	E900
2560	0A00	10752	2A00	18944	4A00	27136	6A00	35328	8A00	43520	AA00	51712	CA00	59904	EA00
2816	0B00	11008	2B00	19200	4B00	27392	6B00	35584	8B00	43776	AB00	51968	CB00	60160	EB00
3072	0C0	1126	2C00	19456	4C00	2764	6C00	35840	8C00	44032	AC00	52224	CC00	60416	EC00
3328	0D00	11520	2D00	19712	4D00	27904	6D00	36096	8D00	44288	AD00	52480	CD00	60672	ED00
3584	0E00	11776	2E00	19968	4E00	28160	6E00	36352	8E00	44544	AE00	52736	CE00	60928	EE00
3840	0F	12032	2F00	20224	4F00	2841	6F00	36608	8F00	44800	AF00	52992	CF00	61184	EF00
4096	1000	12288	3000	20480	5000	28672	7000	36864	9000	45056	B000	53248	D000	61440	F000
4352	1100	12544	3100	20736	5100	28928	7100	37120	9100	45312	B100	53504	D100	61696	F100
4608	1200	1280	3200	20992	5200	2918	7200	37376	9200	45568	B200	53760	D200	61952	F200
4864	1300	13056	3300	21248	5300	29440	7300	37632	9300	45824	B300	54016	D300	62208	F300
5120	1400	13312	3400	21504	5400	29696	7400	37888	9400	46080	B400	54272	D400	62464	F400
5376	1500	13568	3500	21760	5500	29952	7500	38144	9500	46336	B500	54528	D500	62720	F500
5632	1600	13824	3600	22016	5600	30208	7600	38400	9600	46592	B600	54784	D600	62976	F600
5888	1700	14080	3700	22272	5700	30464	7700	38656	9700	46848	B700	55040	D700	63232	F700
6144	1800	14336	3800	22528	5800	30720	7800	38912	9800	47104	B800	55296	D800	63488	F800
6400	1900	14592	3900	22784	5900	30976	7900	39168	9900	47360	B900	55552	D900	63744	F900
6656	1 A 00	14848	3 A 00	23040	5A00	31232	7A00	39424	9A00	47616	BA00	55808	DA00	64000	FA00
6912	1B00	15104	3B00	23296	5B00	31488	7B00	39680	9B00	47872	BB00	56064	DB00	64256	FB00
7168	1 C 00	15360	3 C 00	23552	5C00	31744	7C00	39936	9C00	48128	BC00	56320	DC00	64512	FC00
7424	1D00	15616	3D00	23808	5D00	32000	7D00	40192	9D00	48384	BD00	56576	DD00	64768	FD00
7680	1E00	15872	3E00	24064	5E00	32256	7E00	40448	9E00	48640	BE00	56832	DE00	65024	FE00
7936	1F00	16128	3F00	24320	5F00	32512	7F00	40704	9F00	48896	BF00	57088	DF00	65280	FF00

Note: $\quad D_{3}$: Decimal H_{3} : Hexadecimal

Table 6-3-3

3-3. SERVO AND RF SYSTEM ADJUSTMENTS

Before perform the servo and RF system adjustments, check that the specified values of " $66 \mathrm{MHz} / 54 \mathrm{MHz}$ Origin Oscillation Adjustment" of "1-3. CAMERA SYSTEM ADJUSTMENTS" is satisfied.
Check that the data of page: 0 , address: 10 is " 00 ".
If not, select page: 0 , address: 10 , and set the data " 00 ".

Adjusting Procedure:

1. CAP FG duty adjustment
2. PLL $f_{0} \& L P F f_{0}$ Pre-adjustment
3. Switching position adjustment
4. AGC center level and APC \& AEQ adjustment
5. PLL $f_{0} \& L P F f_{0}$ final adjustment

1. CAP FG Duty Adjustment (VC-288 board)

Radarw

Set the CAP FG signal duty cycle to 50% to establish an appropriate capstan servo. If deviated, the uneven rotation of capstan and noise can occur in the LP mode.

Mode	VTR stop
Signal	No signal
Measurement Point	Displayed data of page: 3, address: 03
Measuring Instrument	Adjusting remote commander
Adjustment Page	C
Adjustment Address	16
Specified value	The data of page: 3, address: 03 is ""00"

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".
Adjusting method:

Order	Page	Address	Data	Procedure
1				Close the cassette compartment without inserting cassette.
2	0	01	01	
3	3	01	1B	Press PAUSE button.
4	3	02		Check the data changes in the following order $" 1 \mathrm{~B} " \rightarrow$ " 2 B " \rightarrow " 00 "
5	3	03		Check the data is " 00 ". ((Note 2)
6	0	01	00	

Note 2: If the data is " 01 ", adjustment has errors or the mechanism deck is defective.

2. PLL f_{0} \& LPF f_{0} Pre-Adjustment (VC-288 board)

 RadarW| Mode | VTR stop |
| :--- | :--- |
| Signal | No signal |
| Measurement Point | Displayed data of page: 3, address:
 02 and 03 |
| Measuring Instrument | Adjusting remote commander |
| Adjustment Page | C |
| Adjustment Address | 1F, 20, 22, 29 |
| Specified value | The data of page: 3, address: 02 is " "00"
 The data of page: 3, address: 03 is " 00 " |

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	C	21	DC	Press PAUSE button.
3	3	01	30	Press PAUSE button.
4	3	02		Check the data changes to "00" within 5 seconds. (Note 2)
5	3	03		Check the data is " 00 ". (Note 2, 3)
6	0	01	00	

Note 2: If check is NG, select page: C, address: 21, set the following data, and press the PAUSE button, and repeat steps 3 to 5 .

	Setting data
When the data of page: C, address: 21 is "DC"	E0
When the data of page: C, address: 21 is "E0"	D8
When the data of page: C, address: 21 is "D8"	E4
When the data of page: C, address: 21 is "E4"	D4

The adjustment is defective, if the above procedure results in NG.
Note 3: If bit value of bit2, bit3, bit4, bit5 or bit6 is " 1 ", adjustment has errors. For the error contents, see the following table. (For the bit values, refer to " $6-4$. SERVICE MODE", "4-3. 3. Bit value discrimination".)

Bit value of page: 3, address: 03 data	Error contents
bit $2=1$ or bit $3=1$	PLL f_{0} fine adjustment is defective
bit $4=1$ or bit $5=1$	PLL f_{0} adjustment is defective
bit6 $=1$	LPF f_{0} adjustment is defective

3. Switching Position Adjustment (VC-288 board)

RadarW

Mode	VTR playback
Signal	SW/OL standard (XH2-3)
Measurement Point	Displayed data of page: 3 , address: 03
Measuring Instrument	Adjusting remote commander
Adjustment Page	C
Adjustment Address	$10,11,12,13$
Specified value	The data of page: 3, address: 03 is " 00 ""

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".

Adjusting method:

Order	Page	Address	Data	Procedure
1				Insert the SW/OL standard tape and enter the VTR stop mode.
2	0	01	01	
3	C	10	EE	Press PAUSE button.
4	3	21		Check the data is "02". (Note 2)
5	3	01	0 D	Press PAUSE button.
6	3	02		Check the data changes to " 00 ".
7	3	03		Check the data is "00". (Note 3)
8	0	01	00	

Note 2: If the data is " 72 ", the tape top being played. After playing the tape for 1 to 2 seconds, stop it, perform step 5 and higher.
If the data is " 62 ", the tape end being played. After rewind the tape, perform step 5 and higher.
Note 3: If bit0 of the data is " 1 ", the EVEN channel is defective. If bitl of the data is " 1 ", the ODD channel is defective. Contents of the defect is see written into page: C, address: 10 and 12. See following table. (For the bit values, refer to "6-4. SERVICE MODE", "4-3. 3. Bit value discrimination".)
If bit3 of the data is " 1 ", the tape end being played, so rewind the tape and perform the adjustment again.

When the EVEN channel is defective

Data of page: C, address: 10	Contents of defect
EE	Writing into EEP ROM (IC2502) is defective
E8	Adjustment data is out of range
E7	No data is returned from IC2101

When the ODD channel is defective

Data of page: C, address: 12	Contents of defect
EE	Writing into EEP ROM (IC2502) is defective
E8	Adjustment data is out of range
E7	No data is returned from IC2101

4. AGC Center Level and APC \& AEQ Adjustment

Note: Check that the data of page: 0 , address: 10 is " 00 ".
4-1. Preparations before adjustments

Mode	CAMERA recording
Subject	Arbitrary

Adjusting method:

Order	Page	Address	Data	Procedure
1	7	30	80	
2				Record camera signal for 3 minutes, and rewind the tape.

4-2. AGC Center Level Adjustment (VC-288 board) RadarW

Mode	VTR playback
Subject	Recorded signal at "Preparations before adjustments"
Measurement Point	CH1: Pin (20) of CN1008 (RF MON) (Note 1) CH2 (Trigger): Pin (17) of CN1008 (SWP)
Measuring Instrument	Oscilloscope
Adjustment Page	C
Adjustment Address	1E
Specified value	The data of page: 3, address: 03 is "00"

Note 1: Connect a 75Ω resistor (1-247-804-11) between Pin (20) and Pin (19) (GND) of CPC jig.

Adjusting method:

Order	Page	Address	Data	Procedure			
1				Playback the recorded signal at"Preparations before adjustments".			
2	0	01	01				
3	3	33	08				
4				Confirm that the playback RF signal is stable. (Fig. 6-3-5)			
5	3	01	23	Press PAUSE button.			
6	3	02		Check the data changes to "00"			
7	3	03		Check the data is "00". (Note 2)	$	$	Perform "APC \& AEQ
:---							
8							

Note 2: If the data is other than " 00 ", adjustment has errors. (Take an appropriate remedial measures according to the errors referring to the following table)

Data of page: 3, address: 03	Contents of defect
20	Perform re-adjustment. (Note 3)
30	The machine is defective.
40	Perform re-adjustment. (Note 3)
50	The machine is defective.

Note 3: If this data displayed twice successively, the machine is defective.

4-3. APC \& AEQ Adjustment (VC-288 board) RadarW

Mode	VTR playback
Subject	Recorded signal at "Preparations before adjustments"
Measurement Point	CH1: Pin (20) of CN1008 (RF MON) (Note 1) CH2 (Trigger): Pin ©17 of CN1008 (SWP)
Measuring Instrument	Oscilloscope
Adjustment Page	C
Adjustment Address	$18,19,1 \mathrm{~B}, 1 \mathrm{C}, 21,2 \mathrm{C}$
Specified value	The data of page: 3, address: 03 is "00"

Note 1: Connect a 75Ω resistor (1-247-804-11) between Pin (20) and Pin (19) (GND) of CPC jig.
Note 2: Perform "AGC Center Level Adjustment" before this adjustment.

Adjusting method:

Order	Page	Address	Data	Procedure					
1				Playback the recorded signal at"Preparations before adjustments".					
2	0	01	01						
3	3	33	08						
4				Confirm that the playback RF signal is stable. (Fig. 6-3-5)					
5	3	01	07	Press PAUSE button.					
6	3	02		Check the data changes from "07"to "00" in about 20 seconds after pressing PAUSE button					
7	3	03		Check the data is "00". (Note 3)	$	$	8	7	30
:---:	:---:	:---:							
00									
9	3	33							
10	0	01							
00									

Note 3: If the data is other than " 00 ", adjustment has errors. (Take an appropriate remedial measures according to the errors referring to the following table)

Data of page: 3, address: 03	Contents of defect
20	Perform re-adjustment. (Note 4)
30	The machine is defective.
50	Perform re-adjustment. (Note 4)
60	The machine is defective.
80	The machine is defective.

Note 4: If this data displayed twice successively, the machine is defective.

Fig. 6-3-5

5. PLL f_{0} \& LPF f_{0} Final Adjustment (VC-288 board)

RadarW

Mode	VTR stop
Signal	No signal
Measurement Point	Displayed data of page: 3 , address: 02 and 03
Measuring Instrument	Adjusting remote commander
Adjustment Page	C
Adjustment Address	1F, 20, 22, 29
Specified value	The data of page: 3 , address: 02 is " " 00 " The data of page: 3 , address: 03 is " 00 "

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	3	01	30	Press PAUSE button.
3	3	02		Check the data changes to "00" within 5 seconds. (Note 2)
4	3	03		Check the data is " 00 ". (Note 2, 3)
5	0	01	00	

Note 2: If check is NG , the machine is defective.
Note 3: If bit value of bit2, bit3, bit4, bit5 or bit6 is " 1 ", adjustment has errors. For the error contents, see the following table. (For the bit values, refer to " $6-4$. SERVICE MODE", "4-3. 3. Bit value discrimination".)

Bit value of page: 3, address: 03 data	Error contents
bit $2=1$ or bit $3=1$	PLL f_{0} fine adjustment is defective
bit $4=1$ or bit $5=1$	PLL f_{0} adjustment is defective
bit6 $=1$	LPF f_{0} adjustment is defective

3-4. VIDEO SYSTEM ADJUSTMENTS

Before perform the video system adjustments, check that the specified values of " $66 \mathrm{MHz} / 54 \mathrm{MHz}$ Origin Oscillation Adjustment" of "1-3. CAMERA SYSTEM ADJUSTMENTS" is satisfied.
Check that the data of page: 0 , address: 10 is " 00 ".
If not, select page: 0 , address: 10 , and set the data " 00 ".

Adjusting Procedure:

1. Chroma BPF f_{0} adjustment
2. S VIDEO OUT Y level adjustment
3. S VIDEO OUT chroma level adjustment
4. VIDEO OUT level check
5. Chroma BPF fo Adjustment (DB-014 board)

Set the center frequency of IC7001 chroma band-pass filter.

Mode	CAMERA
Subject	All black (Cover the lens with the lens cap)
Measurement Point	CH1: Chroma signal terminal of S VIDEO jack (75 Ω terminated) CH2: Y signal terminal of S VIDEO jack (75 Ω terminated)
Measuring Instrument	Oscilloscope
Adjustment Page	C
Adjustment Address	28
Specified value	A $=100 \mathrm{mVp}-\mathrm{p}$ or less $\mathrm{B}=200 \mathrm{mVp}$ p or more

Note: Check that the data of page: 0 , address: 10 is " 00 ".
Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2				Check the that the burst signal (B) is output to the chroma signal terminal.
3	3	0 C	04	Press PAUSE button.
4	C	28		Change the data and for minimum amplitude of the burst signal level (A). (The data should be "00" to "0F")
5	C	28		Press PAUSE button.
6	3	0 C	00	Press PAUSE button.
7				Check the burst signal (B) to the specified value.
8	0	01	00	

When the data of page: 3 , address: $0 C$, is 04 :

When the data of page: 3 , address: 0 C , is 00 :

Fig. 6-3-6

2. S VIDEO OUT Y Level Adjustment (DB-014 board)

Mode	CAMERA
Subject	Arbitrary
Measurement Point	Y signal terminal of S VIDEO jack (75 Ω terminated $)$
Measuring Instrument	Oscilloscope
Adjustment Page	C
Adjustment Address	25
Specified value	A $=1000 \pm 14 \mathrm{mVp}-\mathrm{p}$

Note: Check that the data of page: 0 , address: 10 is " 00 ".
Switch setting

1) DEMO MODE (Menu display)

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	3	0 C	02	Press PAUSE button.
3	C	25		Change the data and set the Y signal level (A) to the specified value.
4	C	25		Press PAUSE button.
5	3	0 C	00	Press PAUSE button.
6	0	01	00	

Fig. 6-3-7

3. S VIDEO OUT Chroma Level Adjustment (DB-014 board)

Mode	CAMERA
Subject	Arbitrary
Measurement Point	Chroma signal terminal of S VIDEO jack (75 Ω terminated) External trigger: Y signal terminal of S VIDEO jack (75 Ω terminated)
Measuring Instrument	Oscilloscope
Adjustment Page	C
Adjustment Address	26, 27
Specified value	$\begin{aligned} \hline \text { Cr level: } \mathrm{A} & =714 \pm 14 \mathrm{mVp}-\mathrm{p} \text { (NTSC) } \\ \mathrm{A} & =700 \pm 14 \mathrm{mVp} \text { (PAL) } \\ \text { Cb level: } \mathrm{B} & =714 \pm 14 \mathrm{mVp}-\mathrm{p} \text { (NTSC) } \\ \mathrm{B} & =700 \pm 14 \mathrm{mVp} \text { (PAL) } \\ \text { Burst level: } & \mathrm{C}=286 \pm 6 \mathrm{mVp} \mathrm{p} \text { (NTSC) } \\ \mathrm{C} & =300 \pm 6 \mathrm{mVp}-\mathrm{p} \text { (PAL) } \end{aligned}$

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".
Note 2: NTSC model: DCR-TRV940/TRV950
PAL model: DCR-TRV940E/TRV950E

Switch setting

1) DEMO MODE (Menu display)

Adjusting method:

Order	Page	Address	Data	Procedure
1	0	01	01	
2	3	0 C	02	Press PAUSE button.
3	C	26		Change the data and set the Cr signal level (A) to the specified value.
4	C	26		Press PAUSE button.
5	C	27		Change the data and set the Cb signal level (B) to the specified value.
6	C	27		Press PAUSE button.

Fig. 6-3-8
4. VIDEO OUT Level Check (DB-014 board)

Mode	CAMERA
Subject	Arbitrary
Measurement Point	Video terminal of A/V jack $(75 \Omega$ terminated)
Measuring Instrument	Oscilloscope
Specified value	Sync level: A $=286 \pm 18 \mathrm{mVp}-\mathrm{p}$ (NTSC)
A $=300 \pm 18 \mathrm{mVp}-\mathrm{p}$ (PAL)	
	Burst level:$\mathrm{B}=286 \pm 18 \mathrm{mVp}-\mathrm{p}$ (NTSC) B $=300 \pm 18 \mathrm{mVp}-\mathrm{p}$ (PAL)

Note 1: Check that the data of page: 0 , address: 10 is " 00 ".
Note 2: NTSC model: DCR-TRV940/TRV950
PAL model: DCR-TRV940E/TRV950E
Switch setting

1) DEMO MODE (Menu display)

OFF
Checking method:

Order	Page	Address	Data	Procedure
1	3	0 C	02	Press PAUSE button.
2				Check the sync signal level (A) to the specified value.
3				Check the burst signal level (B) to the specified value.
4	3	0 C	00	Press PAUSE button.

Fig. 6-3-9

DCR-TRV940/TRV940E/TRV950/TRV950E

3-5. AUDIO SYSTEM ADJUSTMENTS

[Connecting the measuring instruments for the audio]
Connect the audio system measuring instruments in addition to the video system measuring instruments as shown in Fig. 6-3-10.

1. Playback Level Check

Mode	VTR playback
Signal	Alignment tape: For audio operation check (XH5-3 (NTSC)) (XH5-3P (PAL))
Measurement Point	Audio left or right terminal of A/V jack
Measuring Instrument	Audio level meter and frequency counter
Specified Value	32 kHz mode: $1 \mathrm{kHz},+3.0 \pm 2.0 \mathrm{dBs}$ 48 kHz mode: $1 \mathrm{kHz},+3.0 \pm 2.0 \mathrm{dBs}$ 44.1 kHz mode: The 7.35 kHz signal level during EMP OFF is +2.0 $\pm 2.0 \mathrm{dBs}$. The 7.35 kHz signal level during EMP ON is $-6 \pm 2 \mathrm{~dB}$ from the signal level during EMP OFF.

Checking Method:

1) Check that the playback signal level is the specified value.

2. Overall Level Characteristics Check

Mode	Camera recording and playback
Signal	$400 \mathrm{~Hz},-66$ dBs signal: MIC jack left and right
Measurement Point	Audio left or right terminal of A/V jack
Measuring Instrument	Audio level meter
Specified Value	$-7.5 \pm 3.0 \mathrm{dBs}$

Checking Method:

1) Input the $400 \mathrm{~Hz},-66 \mathrm{dBs}$ signal in the MIC jack.
2) Record in the camera mode.
3) Playback the recorded section.
4) Check that the 400 Hz signal level is the specified value.

Fig. 6-3-10

3. Overall Distortion Check

Mode	Camera recording and playback
Signal	$400 \mathrm{~Hz},-66 \mathrm{dBs}$ signal: MIC jack left and right
Measurement Point	Audio left or right terminal of A/V jack
Measuring Instrument	Audio distortion meter
Specified Value	Below 0.4% (200 Hz to 6 kHz BPF ON)

Checking Method:

1) Input the $400 \mathrm{~Hz},-66 \mathrm{dBs}$ signal in the MIC jack.
2) Record in the camera mode.
3) Playback the recorded section.
4) Check that the distortion is the specified value.

4. Overall Noise Level Check

Mode	Camera recording and playback
Signal	No signal: Insert a shorting plug in the MIC jack
Measurement Point	Audio left or right terminal of A/V jack
Measuring Instrument	Audio level meter
Specified Value	Below -45 dBs (IHF-A filter ON, 20 kHz LPF ON)

Checking Method:

1) Insert a shorting plug in the MIC jack.
2) Record in the camera mode.
3) Playback the recorded section.
4) Check that the noise level is the specified value.

5. Overall Separation Check

Mode	Camera recording and playback
Signal	$400 \mathrm{~Hz},-66 \mathrm{dBs}$ signal: MIC jack <right> [left] (Connect the MIC jack <left> [right] to GND)
Measurement Point	Audio <left> [right] terminal of A/V jack
Measuring Instrument	Audio level meter
Specified Value	Below -40 dBs (IHF-A filter ON)

<> : Left channel check
[] : Right channel check

Checking Method:

1) Input the $400 \mathrm{~Hz},-66 \mathrm{dBs}$ signal in the <right> [left] terminal of the MIC jack only.
2) Record in the camera mode.
3) Playback the recorded section.
4) Check that the signal level of the audio output <left> [right] terminal is the specified value.

6-4. SERVICE MODE

4-1. ADJUSTMENT REMOTE COMMANDER

The adjustment remote commander is used for changing the calculation coefficient in signal processing, EVR data, etc. The adjustment remote commander performs bi-directional communication with the unit using the remote commander signal line (LANC). The resultant data of this bi-directional communication is written in the non-volatile memory.

1. Using the Adjustment Remote Commander
1) Connect the adjustment remote commander to the LANC terminal.
2) Set the HOLD switch of the adjustment remote commander to "HOLD" (SERVICE position). If it has been properly connected, the LCD on the adjustment remote commander will display as shown in Fig. 6-4-1.

Fig. 6-4-1
3) Operate the adjustment remote commander as follows.

- Changing the page

The page increases when the EDIT SEARCH+ button is pressed, and decreases when the EDIT SEARCH- button is pressed. There are altogether 16 pages, from 0 to F .

Hexadecimal notation	0	1	2	3	4	5	6	7	8	9	A B C D E F				
LCD Display	\square	1	\beth	\exists	4	5	5	7	8	9	A	\square	\square	d	E

- Changing the address

The address increases when the $\mathrm{FF}(\rightarrow$) button is pressed, and decreases when the REW ($\langle\boldsymbol{<}$) button is pressed. There are altogether 256 addresses, from 00 to FF .

- Changing the data (Data setting)

The data increases when the PLAY () button is pressed, and decreases when the STOP (\square) button is pressed. There are altogether 256 data, from 00 to FF .

- Writing the adjustment data

The PAUSE button must be pressed to write the adjustment data in the nonvolatile memory. (The new adjusting data will not be recorded in the nonvolatile memory if this step is not performed)
4) After completing all adjustments, turn off the main power supply (8.4 V) once.

2. Precautions Upon Using

the Adjustment Remote Commander

Mishandling of the adjustment remote commander may erase the correct adjustment data at times. To prevent this, it is recommended that all adjustment data be noted down before beginning adjustments and new adjustment data after each adjustment.

4-2. DATA PROCESS

The calculation of the DDS display and the adjustment remote commander display data (hexadecimal notation) are required for obtaining the adjustment data of some adjustment items. In this case, after converting the hexadecimal notation to decimal notation, calculate and convert the result to hexadecimal notation, and use it as the adjustment data. Indicates the hexadecimal-decimal conversion table.

Hexadecimal-decimal Conversion Table																	
	Lower digit of hexadecimal Upper digit of hexadecimal	0	1	2	3	4	5	6	7	8	9	$\begin{gathered} A \\ (F) \end{gathered}$	$\begin{gathered} B \\ (b) \end{gathered}$	$\begin{gathered} C \\ (\Sigma) \end{gathered}$	$\begin{gathered} \mathrm{D} \\ \left(d^{\prime}\right) \end{gathered}$	$\begin{gathered} E \\ (E) \end{gathered}$	$\begin{gathered} F \\ (F) \end{gathered}$
	0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	1	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	2	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
	3	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
	4	64	65	66	67	68	69	70	71	72	73	74	77	76	77	78	79
	5	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
	6	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
	7	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
	8	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
	9	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
	A (F)	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
(1)	B (b)	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
	C (\quad)	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
	D (\square^{\prime})	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
	E (E)	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
	F (F)	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255

Note: The characters shown in the parenthesis () shown the display on the adjustment remote commander.
(Example) If the DDS display or the adjustment remote commander shows BD ($\square \square^{d}$);
Because the upper digit of the adjustment number is $\mathrm{B}(\underset{\square}{\square})$, and the lower digit is $\mathrm{D}(\square)$, the meeting point " 189 " of (1) and (2) in the above table is the corresponding decimal number.

4-3. SERVICE MODE

Additional note on adjustment

Note: After the completion of the all adjustments, cancel the service mode by either of the following ways.

1) After data on page: D is restored, press the RESET button to reset the unit. (In this case, date and time and menu setting have been set by users are canceled. Perform resetting)
2) After data on page: D is restored, select page: 0 , address: 01 , and return the data to 00 . And when data on page: 2 and 3 are changed, return data to the original condition.

1. Setting the Test Mode

Page D	Address 10

Data	Function
00	Normal
01	Forced camera power ON
02	Forced VTR power ON
03	Forced camera + VTR power ON
05	Forced memory power ON

- Before setting the data, select page: 0 , address: 01 , and set data: 01.
- For page D, the data set will be recorded in the non-volatile memory by pressing the PAUSE button of the adjustment remote commander. In this case, take note that the test mode will not be exited even when the main power is turned off $(8.4 \mathrm{Vdc})$.
- After completing adjustments/repairs, be sure to return the data of this address to 00 , and press the PAUSE button of the adjustment remote commander. And select page: 0 , address: 01 , and set data: 00 .

2. Emergence Memory Address

2-1. C Page Emergence Memory Address

Page C	Address F4 to FF
Address	Contents
F4	EMG code when first error occurs
F6	Upper: MSW code when shift starts when first error occurs Lower: MSW code when first error occurs
F7	Lower: MSW code to be moved when first error occurs
F8	EMG code when second error occurs
FA	Upper: MSW code when shift starts when second error occurs
FB	Lower: MSW code when second error occurs occurs
FC	EMG code when last error occurs
FE	Upper: MSW code when shift starts when last error occurs
FF	Lower: MSW code to be moved when last error occurs

When no error occurs in this unit, data " 00 " is written in the above addresses (F 4 to FF). when first error occurs in the unit, the data corresponding to the error is written in the first emergency address (F 4 to F 7). In the same way, when the second error occurs, the data corresponding to the error is written in the second emergency address (F 8 to FB).
Finally, when the last error occurs, the data corresponding to the error is written in the last emergency address (FC to FF).
Note: After completing adjustments, be sure to initialize the data of addresses F4 to FF to " 00 ".

Initializing method:

1) Select page: 0 , address: 01 , and set data: 01 .
2) Select page: 3, address: 01, set data: 37 , and press the PAUSE button.
3) Select page: 0 , address: 01 , and set data: 00 .

2-2. EMG Code (Emergency Code)

Codes corresponding to the errors which occur are written in C page, addresses F4, F8 and FC. The type of error indicated by the code are shown in the following table.

Code	Emergency Type
00	No error
10	Loading motor emergency during loading
11	Loading motor emergency during unloading
22	T reel emergency during normal rotation
23	S reel emergency during normal rotation
24	T reel emergency (Short circuit between S reel terminal and T reel terminal)
30	FG emergency at the start up of the capstan
40	FG emergency at the start up of the drum
42	FG emergency during normal rotation of the drum

DCR-TRV940/TRV940E/TRV950/TRV950E

2-3. MSW Code

MSW when errors occur:

Information on MSW (mode SW) when errors occur
MSW when movement starts:
Information on MSW when movements starts when the mechanism position is moved (When the L motor is moved)
MSW of target of movement:
Information on target MSW of movement when the mechanism position is moved

Mechanical Position

Position	Code	Contents
EJ	2	Position at which the cassette component lock is released, at the farthest unload side mechanically at which the mechanism can move no further in the UNLOAD direction.
BL	E	BLANK code, at the boundary between codes.
ULE	A	EJECT completion position. when the cassette is ejected, the mechanism will stop at this position. Cassette IN standby. The guide will start protruding out as the mechanism moves towards the LOAD position.
SR	8	Position at which it is possible to release the S ratchet.
GL	C	Guide loading are performed here.
STOP	4	Stop position in the loading state. The pinch roller separates, the tension regulator returns, and the brake is imposed on both reels.
R/P	6	PB, REC, CUE, REVIEW, PAUSE positions. When pinch roller is pressed, and the tension regulator is ON, the mechanism is operating at this position in modes in which normal images are shown.
NULL	0	Code not existing in the MD. Default value.
	F	Status before finding any mechanism position.

3. Bit Value Discrimination

Bit values must be discriminated using the display data of the adjustment remote commander for the following items. Us the table below to discriminate if the bit value is " 1 " or " 0 ".

Display on the adjustment remote commander

(Example) If the remote commander display is " 8 E ", bit value from bit 7 to bit 4 can be discriminated from the column (A), and those from bit 3 to bit 0 from column (B).

Display on the adjustment remote commander	Bit values			
	$\begin{gathered} \text { bit3 } \\ \text { or } \\ \text { bit7 } \end{gathered}$	$\begin{gathered} \text { bit2 } \\ \text { or } \\ \text { bit6 } \end{gathered}$	$\begin{gathered} \hline \text { bit1 } \\ \text { or } \\ \text { bit5 } \end{gathered}$	$\begin{gathered} \hline \text { bit0 } \\ \text { or } \end{gathered}$ bit4
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
A (H) $^{\text {a }}$	1	0	1	0
B (b)	1	0	1	1
$\mathrm{C}(\underline{\square})$	1	1	0	0
D (\boldsymbol{d}^{\prime})	1	1	0	1
E (E)	1	1	1	0
F (F)	1	1	1	1

(B)

4. Jack Check (1)

Bit	Function	When bit value $=1$	When bit value $=0$
1	MIC jack (MA-410 board J5901)	Used	Not used
2	VIDEO/AUDIO jack (JK-222 board J404)	Used	Not used
3	S VIDEO jack (JK-222 block J401)	Used	Not used

Using method:

1) Select page: 7, address: 0C.
2) By discriminating the bit value of display data, the state of jack can be discriminated.

5. Jack Check (2)

Page 3	Address 61

Bit	Function	When bit value $=1$	When bit value $=0$
6	Head Phone jack (JK-222 block J403)	Used	Not used

Using method:

1) Select page: 3 , address: 61 .
2) By discriminating the bit value of display data, the state of jack can be discriminated.

6. Switch Check

Page 2	Address 61 to 66

Using method:

1) Select page: 2 , address: 61 to 66 .
2) By discriminating the display data, the pressed key can be discriminated.

Address	Data							
	00	19	32	4E	6 F	96	C1	EB
	00 to 0C	OD to 24	25 to 3F	40 to 5D	5E to 81	82 to AA	AB to D7	D8 to FF
$\begin{gathered} 61 \\ (\text { KEY AD1) } \\ (\text { IC3101 ©0) } \end{gathered}$		$\begin{gathered} \hline \text { PHOTO } \\ \text { (REC) } \\ \text { (CF-1870 block) } \\ \text { (S001) } \end{gathered}$	NETWORK *1 (FP-497 flexible) (S001)	FADER (FP-504 flexible) (S604)	FLASH (FP-504 flexible) (S603)	FOCUS INFINITY (FP-504 flexible) (S601)	FOCUS AUTO/ PUSH AUTO (FP-504 flexible) (S601, S602)	FOCUS MAN (FP-504 flexible) (S601)
$\begin{gathered} 62 \\ (\text { KEY AD2) } \\ \text { (IC3101 ©1) } \end{gathered}$		SEL/PUSH EXEC (EXEC) (KP-1870 block) (S007)	DATA CODE (CK-116 board) (S5203)	EDIT SEARCH - (CK-116 board) (S5204)	EDIT SEARCH + (CK-116 board) (S5205)	$\begin{array}{\|c} \text { ZEBRA } 100 \\ \text { (CK-116 board) } \\ \text { (S5202) } \end{array}$	$\begin{aligned} & \text { ZEBRA OFF } \\ & \text { (CK-116 board) } \\ & (\mathrm{S} 5202) \end{aligned}$	$\begin{gathered} \text { ZEBRA 70 } \\ \text { (CK-116 board) } \\ (\text { S5202 }) \end{gathered}$
$\begin{gathered} 63 \\ (\text { KEY AD3) } \\ (\text { IC3101 65) } \end{gathered}$	$\begin{gathered} \text { STOP } \\ \text { (CK-116 board) } \\ \text { (S5206) } \end{gathered}$	$\begin{gathered} \text { REW } \\ (\text { CK-116 board }) \\ (\mathrm{S} 5207) \end{gathered}$	$\begin{gathered} \text { PLAY } \\ \text { (CK-116 board) } \\ \text { (S5208) } \end{gathered}$	$\begin{gathered} \text { FF } \\ (\mathrm{CK}-116 \text { board }) \\ (\mathrm{S} 5209) \end{gathered}$		REC (CK-116 board) (S5211, S5212)	PANEL CLOSE (FP-495 flexible) (S001)	PANEL OPEN (FP-495 flexible) (S001)
$\begin{gathered} 64 \\ (\text { KEY AD4) } \\ (\text { IC3101 ©6) } \end{gathered}$	$\begin{gathered} \text { COLOR BAR } \\ \text { (CK-116 board) } \\ \text { (S5213) } \end{gathered}$	$\begin{gathered} \text { VOLUME + } \\ \text { (CK-116 board) } \\ (\text { S5214 }) \end{gathered}$	VOLUME -(CK-116 board) (S5215)	DISPLAY/ TOUCH PANEL (CK-116 board) (S5216)	$\begin{gathered} \text { MENU } \\ \text { (KP-1870 block) } \\ \text { (S001) } \end{gathered}$	AUDIO DUB (CK-116 board) (S5217)	PANEL REVERSE (FP-495 flexible) (S002)	PANEL NORMAL (FP-495 flexible) (S002)
$\begin{gathered} 65 \\ (\text { KEY AD5) } \\ (\text { IC3101 67) } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { AUDIO } \\ \text { LEVEL } \\ \text { (KP-1870 block) } \\ \text { (S002) } \\ \hline \end{array}$	$\begin{gathered} \text { EXPOSURE } \\ \text { (KP-1870 block) } \\ \text { (S003) } \end{gathered}$	WHITE BAL (KP-1870 block) (S004)	SHUTTER SPEED (KP-1870 block) (S005)	$\begin{array}{\|c} \hline \text { PROGRAM } \\ \text { AE } \\ \text { (KP-1870 block) } \\ (\mathrm{S} 006) \\ \hline \end{array}$	AUTO LOCK (AUTO LOCK) (CK-116 board) (S5201)	$\begin{aligned} & \hline \text { AUTO LOCK } \\ & \text { (HOLD) } \\ & \text { (CK-116 board) } \\ & \text { (S5201) } \\ & \hline \end{aligned}$	AUTO LOCK (RELEASE) (CK-116 board) (S5201)
$\begin{gathered} 66 \\ (\text { KEY AD6) } \\ (\text { IC3101 88) } \end{gathered}$				PAUSE (CK-116 board) (S5210)	BACK LIGHT (CK-116 board) (S5218)	SPOT LIGHT (CK-116 board) (S5219)	CUSTOM PRESET (CK-116 board) (S5220)	No key input

*1: DCR-TRV950/TRV950E only

7. LED, LCD (Display Window) Check

Page 7	Address 07	Bit4, Bit5

Using method:

1) Select page: 7, address: 07 , and set the bit value of Bit4 and Bit5 to " 1 ".
2) Check that the LED (Camera recording, Flash) are lit and all segments of LCD (display window) are lit.
3) Select page: 7, address: 07 , and set the bit value of Bit 4 and Bit5 to " 0 ".

8. Record of Use Check (1)

Page 7	Address A7 to A9

Note 1: This data will not be erased (reset) when the lithium 3 V power supply (CK-116 board BT5201) is removed.
Note 2: When the drum was replaced, initialize the drum rotation counted time.
Note 3: Check that the data of page: 0 , address: 10 is " 00 ".

Address	Function		Remarks
A7	Drum rotation counted time (BCD code)	Hour (H)	100000th place digit and 10000th place digit of counted time (decimal digit)
A8		Hour (M)	1000th place digit and 100th place digit of counted time (decimal digit)
A9		Hour (L)	10th place digit and 1st place digit of counted time (decimal digit)

Using method:

1) The record of use data is displayed at page: 7, addresses: A7 to A9.

Initializing method of drum rotation counted time:

1) Select page: 7, address: 00, and set data: 71 .
2) Select page: 7, address: 01, set data: 71, and press the PAUSE button.
3) Select page: 7 , address: 02 , and check that the data is " 01 ".

9. Record of Use Check (2)

Page 7	Address C 8 to CD

Note 1: This data will not be erased (reset) when the lithium 3 V power supply (CK-116 board BT5201) is removed.
Note 2: Check that the data of page: 0 , address 10 is " 00 ".

Address	Function		Remarks
C8	User initial power on date (BCD code)	Year	After setting the clock, set the date of power on next
C9		Month	
CA		Day	
CB	Final condensation occurrence date (BCD code)	Year	
CC		Month	
CD		Day	

Using method:

1) The record of use data is displayed at page: 7, addresses: C8 to CD.

10. Record of Self-diagnosis check

Page 7	Address B0 to C6

Note 1: This data will not be erased (reset) when the lithium 3 V power supply (CK-116 board BT5201) is removed.
Note 2: Check that the data of page: 0 , address 10 is " 00 ".

Address	Self-diagnosis code
B0	"Repaired by" code (Occurred 1st time) *1
B1	"Block function" code (Occurred 1st time)
B2	"Detailed" code (Occurred 1st time)
B4	"Repaired by" code (Occurred 2nd time) *1
B5	"Block function" code (Occurred 2nd time)
B6	"Detailed" code (Occurred 2nd time)
B8	"Repaired by" code (Occurred 3rd time) *1
B9	"Block function" code (Occurred 3rd time)
BA	"Detailed" code (Occurred 3rd time)
BC	"Repaired by" code (Occurred 4th time) ${ }^{*} 1$
BD	"Block function" code (Occurred 4th time)
BE	"Detailed" code (Occurred 4th time)
C0	"Repaired by" code (Occurred 5th time) *1
C1	"Block function" code (Occurred 5th time)
C2	"Detailed" code (Occurred 5th time)
C4	"Repaired by" code (Occurred the last time) ${ }^{* 1}$
C5	"Block function" code (Occurred the last time)
C6	"Detailed" code (Occurred the last time)

Using method:

1) The past self-diagnosis codes are displayed at page: 7, address: B0 to C6. Refer to "1-6. SELF-DIAGNOSIS FUNCTION" of "SERVICE MANUAL, LEVEL 2 (992997831.pdf)" for detail of the self-diagnosis code.

Take a copy of CAMERA COLOR REPRODUCTION FRAME with a clear sheet for use.

For NTSC model

DCR-TRV940/TRV950

For PAL model

Revision History

Ver.	Date	History	Contents	S.M. Rev. issued
1.0	2002.05	Official Release	-	-

[^0]: 3) Select page: 0, address: 01 , and set data: 00 .
